
Falcon: Fast-Fourier Lattice-based
Compact Signatures over NTRU

Specification v1.2 — 01/10/2020

Pierre-Alain Fouque Jeffrey Hoffstein Paul Kirchner
Vadim Lyubashevsky Thomas Pornin Thomas Prest Thomas Ricosset

Gregor Seiler WilliamWhyte Zhenfei Zhang

falcon@ens.fr

falcon@ens.fr

Contents

1 Introduction 5
1.1 Genealogy of Falcon . 6
1.2 Subsequent RelatedWork . 7
1.3 NIST Requirements . 7
1.4 Changelog . 8

2 The Design Rationale of Falcon 9
2.1 AQuest for Compactness . 9
2.2 The Gentry-Peikert-Vaikuntanathan Framework . 10

2.2.1 Features and instantiation of the GPV framework 11
2.2.2 Statefulness, de-randomization or hash randomization 11

2.3 NTRU Lattices . 12
2.3.1 Introduction to NTRU lattices . 12
2.3.2 Instantiation with the GPV framework . 12
2.3.3 Choosing optimal parameters . 13

2.4 Fast Fourier Sampling . 13
2.5 Security . 14

2.5.1 Known Attacks . 14
2.5.2 Precision of the Floating-Point Arithmetic 17

2.6 Summary of Parameters . 17
2.7 Advantages and Limitations of Falcon . 19

2.7.1 Advantages . 19
2.7.2 Limitations . 20

3 Specification of Falcon 21
3.1 Overview . 21
3.2 Technical Overview . 22
3.3 Notations . 23
3.4 Keys . 25

3.4.1 Public Parameters . 25

3

3.4.2 Private Key . 25
3.4.3 Public key . 27

3.5 FFT and NTT . 27
3.6 Splitting andMerging . 28

3.6.1 Algebraic interpretation . 29
3.7 Hashing . 31
3.8 Key Pair Generation . 32

3.8.1 Overview . 32
3.8.2 Generating the polynomials f, g, F,G. 33
3.8.3 Computing a Falcon Tree . 36

3.9 Signature Generation . 38
3.9.1 Overview . 38
3.9.2 Fast Fourier Sampling . 39
3.9.3 Sampler over the Integers . 40

3.10 Signature Verification . 45
3.10.1 Overview . 45
3.10.2 Specification . 45

3.11 Encoding Formats . 46
3.11.1 Bits and Bytes . 46
3.11.2 Compressing Gaussians . 46
3.11.3 Signatures . 47
3.11.4 Public Keys . 49
3.11.5 Private Keys . 49
3.11.6 NIST API . 50

3.12 A Note on the Key-Recovery Mode . 50
3.13 Recommended Parameters . 51

4 Implementation and Performances 53
4.1 Floating-Point . 53
4.2 FFT and NTT . 54

4.2.1 FFT . 54
4.2.2 NTT . 55

4.3 LDL Tree . 56
4.4 Key Pair Generation . 57

4.4.1 Gaussian Sampling . 57
4.4.2 Filtering . 57
4.4.3 Solving The NTRU Equation . 58

4.5 Performances . 61

4

Chapter 1

Introduction

Falcon is a lattice-based signature scheme. It stands for the following acronym:

Fast Fourier lattice-based compact signatures over NTRU

Thehigh-level design of Falcon is simple: we instantiate the theoretical framework described byGentry,
Peikert and Vaikuntanathan [GPV08] for constructing hash-and-sign lattice-based signature schemes.
This framework requires two ingredients:

• A class of cryptographic lattices. We chose the class of NTRU lattices.

• A trapdoor sampler. We rely on a new technique which we call fast Fourier sampling.
In a nutshell, the Falcon signature scheme may therefore be described as follows:

Falcon = GPV framework + NTRU lattices + Fast Fourier sampling

This document is the supporting documentation of Falcon. It is organized as follows. Chapter 2 ex-
plains the overall design of Falcon and its rationale. Chapter 3 is a complete specification of Falcon.
Chapter 4 discusses implementation issues and possible optimizations, and described measured perfor-
mance.

5

1.1 Genealogy of Falcon

NTRUSign
[HHP+03]

GPV
Framework
[GPV08]

Provable
NTRUSign

[SS11]

Instantiation
of GPV IBE
[DLP14]

Falcon

Fast Fourier
Sampling
[DP16]

Figure 1.1: The genealogic tree of Falcon

Falcon is the product of many years of work, not only by the authors but also by others. This section
explains how these works gradually led to Falcon as we know it.
The first work is the signature scheme NTRUSign [HHP+03] by Hoffstein et al., which was the first,
alongwithGGH[GGH97], topropose lattice-based signatures. TheuseofNTRUlattices byNTRUSign
allows it to be very compact. However, both had a flaw in the deterministic signing procedure which led
to devastating key-recovery attacks [NR06, DN12].
At STOC 2008, Gentry, Peikert and Vaikuntanathan [GPV08] proposed a method which not only cor-
rected the flawed signing procedure but, even better, did it in a provably secure way. The result was a
generic framework (theGPVframework) forbuilding securehash-and-sign lattice-based signature schemes.
The next step towards Falcon was the work of Stehlé and Steinfeld [SS11], who combined the GPV
framework with NTRU lattices. The result could be called a provably secure NTRUSign.
In amore practical work, Ducas et al. [DLP14] proposed a practical instantiation and implementation of
the IBE part of the GPV framework over NTRU lattices. This IBE can be converted in a straightforward
manner into a signature scheme. However, doing this would have resulted in a signing time inO(n2).
To address the issue of a slow signing time, Ducas and Prest [DP16] proposed a new algorithm running
in timeO(n log n). However, how to practically instantiate this algorithm remained a open question.
Falcon builds on these works to propose a practical lattice-based hash-and-sign scheme. The fig. 1.1
shows the genealogic tree of Falcon, the first of the many trees that this document contains.

6

1.2 Subsequent Related Work

This section presents a non-exhaustive list of work related to Falcon, and subsequent to the Round 1
version (1.0) of the specification.

Isochronous Gaussian sampling. Realising efficient isochronous Gaussian sampling over the in-
tegers has long been identified as an important problem. Recentworks by Zhao et al. [ZSS20], Karmakar
et al. [KRVV19] andHowe et al. [HPRR20], have proposed new techniques. The sampler in theRound
3 version of Falcon relies on [ZSS20, HPRR20]. Recent work by Fouque et al. [FKT+20] shows that
isochrony is indeed an important requirement for the embedded security of Falcon.

Raptor: Ring signatures using Falcon. Lu, Au and Zhang [LAZ18] have proposed Raptor, a
ring signature scheme which uses Falcon as a building block. The authors provided a security proof in
the random oracle model, as well as an efficient implementation.

Implementation on ARM Cortex. Works by Oder et al. [OSHG19] and Pornin [Por19] have im-
plemented Falcon on ARMCortex-Mmicroprocessors. See also pqm4 [KRSS19].

Key generation. Pornin and Prest [PP19] have formally studied the part of the key generationwhere
polynomials F,G are computed from f, g. This paper can be used as a complement for readers willing
to understand more thoroughly this part of the key generation.

Deployment in TLS 1.3. Sikeridis et al. [SKD20] studied the performance of various NIST candi-
date signature schemes in TLS 1.3. Falcon and Dilithium were the most favorably rated schemes.

1.3 NIST Requirements

In this section, we provide a mapping of the requirements by NIST to the appropriate sections of this
document. This document adresses the requirements in [NIS16, Section 2.B].

• The complete specification as per [NIS16, Section 2.B.1] can be found in Chapter 3. A design
rationale can be found in Chapter 2.

• A performance analysis, as per [NIS16, Section 2.B.2], is provided in Chapter 4.

• The security analysis of the scheme as per [NIS16, Section 2.B.4], and the analysis of known cryp-
tographic attacks against the scheme as per [NIS16, Section 2.B.5], are contained in Section 2.5.

• Advantages and limitations as per [NIS16, Section 2.B.6] are listed in Section 2.7.

• Two sets of parameters as per NIST [NIS16, Section 4.A.5] can be found in Section 3.13.

7

Other requirements in [NIS16] are not addressed in this document, but in other parts of the submission
package.

• A reference implementation as per [NIS16, Section 2.C.1] and Known Answer Test values as per
[NIS16, Section 2.B.2] are present in this submission package.

1.4 Changelog

This is the version 1.2 of Falcon’s specification. The differences with the version 1.0 [PFH+17] are:
• We removed the level II-III set of parameters, which entailed n = 768 and ϕ = xn − xn/2 + 1;
interested readers and implementers can read the version 1.0 of the specification, in which this set
of parameters remains for historical purposes.

• We added a section about the related work (Section 1.2);

• We now describe a key-recovery mode which makes Falcon even more compact (Section 3.12);

• Wedid a fewotherminor additionswhich essentially consist of clarifying anddetailing a fewpoints.
The differences with the version 1.1 [PFH+19] are:

• We propose a formal specification of the Gaussian sampler over the integers, see Section 3.9.3.
This specification consists of four algorithms (algorithms 12 to 15). In addition, Table 3.2 and
Supporting_Documentation/additional/test-vector-sampler-falcon{512,1024}.txt
provide test vectors to validate the implementation of SamplerZ.

• We tweakCompress (algorithm 17) andDecompress (algorithm 18) in order to enforce a unique
encoding of signatures. We are thankful to Quan Nguyen for pointing out to us the (benign)
malleability of the original encodings.

• Weprovideupdatedparameters, seeTable 3.3. Theparameter sets aremore detailed and, in the case
of Falcon-512, nowprovide a fewmore bits of security. In addition, we nowdetail our parameter
selectionprocess in Section2.6 andSupporting_Documentation/additional/parameters.py.
We discuss the concrete security of our parameter sets in Section 2.5.1.

• We make incremental changes to some algorithms. Most reflect optimizations that the reference
code was already doing (e.g. loop unrolling). Others are introduced by SamplerZ and our modi-
fiedCompress/Decompress. Finally, we correct some typos (marked with † below).

– NTRUGen: lines 3, 7, 9, 13 and 14;

– NTRUSolve: lines 4, 11 and 12†;

– LDL⋆;

– ffLDL⋆: line 10;

– Sign: lines 3, 4, 8 and 11;

– ffSampling: lines 3 and 4;

– Compress: lines 4†, 5, 6, 7, 8, 9 and 10;

– Decompress: lines 1, 2, 4†, 6†, 9, 10, 12
and 13;

– Verify: lines 3, 4 and 6.

8

Chapter 2

The Design Rationale of Falcon

2.1 AQuest for Compactness

The design rationale of Falcon stems from a simple observation: when switching fromRSA- or discrete
logarithm-based signatures to post-quantum signatures, communication complexitywill likely be a larger
problem than speed. Indeed, many post-quantum schemes have a simple algebraic description which
makes them fast, but all require either larger keys than pre-quantum schemes, larger signatures, or both.

We expect such performance issues will hinder transition from pre-quantum to post-quantum schemes.
Hence our leading design principle was to minimize the following quantity:

|pk|+ |sig| = (bitsize of the public key) + (bitsize of a signature).

This led us to consider lattice-based signatures, which manage to keep both |pk| and |sig| rather small,
especially for structured lattices. When it comes to lattice-based signatures, there are essentially two
paradigms: Fiat-Shamir or hash-and-sign.

Both paradigms achieve comparable levels of compactness, but hash-and-sign have interesting proper-
ties: the GPV framework [GPV08], which describes how to obtain hash-and-sign lattice-based signature
schemes, is secure in the classical and quantum oracle models [GPV08, BDF+11]. In addition, it enjoys
message-recovery capabilities [dLP16]. So we chose this framework. Details are given in Section 2.2.

Next, we chose a class of cryptographic lattices to instantiate this framework. A close to optimal choice
with respect to our main design principle – compactness – is NTRU lattices: they allow to obtain a
compact instantiation [DLP14] of the GPV framework. In addition, their structure speeds up many
operations by two orders of magnitude. Details are given in Section 2.3.

The last stepwas the trapdoor sampler. We devised a new trapdoor samplerwhich is asymptotically as fast
as the fastest generic trapdoor sampler [Pei10] and provides the same level of security as the most secure
sampler [Kle00]. Details are given in Section 2.4.

9

2.2 The Gentry-Peikert-Vaikuntanathan Framework

In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] established a framework for obtaining secure
lattice-based signatures. At a very high level, this framework may be described as follows:

• The public key contains a full-rank matrix A ∈ Zn×m
q (withm > n) generating a q-ary lattice Λ.

• The private key contains a matrix B ∈ Zm×m
q generating Λ⊥

q , where Λ⊥
q denotes the lattice or-

thogonal to Λ modulo q: for any x ∈ Λ and y ∈ Λ⊥
q , we have ⟨x,y⟩ = 0 mod q. Equivalently,

the rows of A and B are pairwise orthogonal: B×At = 0.

• Given a messagem, a signature of m is a short value s ∈ Zm
q such that sAt = H(m), whereH :

{0, 1}∗ → Zn
q is a hash function. Given A, verifying that s is a valid signature is straightforward:

it only requires to check that s is indeed short and verifies sAt = H(m).

• Computing a valid signature is more delicate. First, a preimage c0 ∈ Zm
q is computed, which

verifies c0At = H(m). As c0 is not required to be short and m ≥ n, this is simply done via
standard linear algebra. B is then used in order to compute a vector v ∈ Λ⊥

q close to c0. The
difference s = c0 − v is a valid signature: indeed, sAt = c0At − vAt = c− 0 = H(m), and if
c0 and v are close enough, then s is short.

This high-level description of a signature scheme is not exclusive to the GPV framework: it was first
instantiated in the GGH [GGH97] and NTRUSign [HHP+03] signature schemes. However, these
schemes suffered total break attacks, whereas the GPV framework is proven secure in the (quantum) ran-
domoraclemodel assuming the hardness of SIS for someparameters. This is becauseGGH/NTRUSign
and the GPV framework have radically different ways of computing v in the signing procedure.

Computing v in GGH and NTRUSign. In GGH andNTRUSign, v is computed using an algo-
rithm called the round-off algorithm and first formalized by Babai [Bab85, Bab86]. In this deterministic
algorithm, c0 is first expressed as a real linear combination of the rows of B, the vector of these real co-
ordinates is then rounded coefficient-wise and multiplied again by B: in a nutshell, v ← ⌊c0B−1⌉B,
where ⌊·⌉ denotes coefficient-wise rounding. At the end of the procedure, s = v − c0 is guaranteed to
lie in the parallelepiped [−1, 1]m ×B, which allows to tightly bound the norm ∥s∥. The problem with
this approach is that each signature s lies in [−1, 1]m × B, and therefore leaks information about the
basis B. This fact was exploited by several key-recovery attacks [NR06, DN12].

Computing v in the GPV framework. Amajor contribution of [GPV08], which is also the key
difference between the GPV framework and GGH/NTRUSign, is the way v is computed. Instead of
the round-off algorithm, the GPV framework relies on a randomized variant by [Kle00] of the nearest
plane algorithm, also formalized by Babai. Just as for the round-off algorithm, using the nearest plane
algorithm would have leaked the secret basis B and resulted in a total break of the scheme. However,
Klein’s algorithm prevents this: it is randomized in a way such that for a givenm, s is sampled according
to a spherical Gaussian distribution over the shifted lattice c0 + Λ⊥

q . This method is proven to leak no

10

information about the basis B. Klein’s algorithm was in fact the first of a family of algorithms called
trapdoor samplers. More details about trapdoor samplers are given in Section 2.4.

2.2.1 Features and instantiation of the GPV framework

Security in the classical and quantum oracle models. In the original paper [GPV08], the
GPV framework has been proven to be secure in the random oracle model under the SIS assumption. In
our case, we use NTRU lattices so we need to adapt the proof for a “NTRU-SIS” assumption, but this
adaptation is straightforward. In addition, the GPV framework has also been proven to be secure in the
quantum oracle model [BDF+11].

Identity-based encryption. Falcon can be turned into an identity-based encryption scheme, as
described in [DLP14]. However, this requires de-randomizing the signatureprocedure (see Section2.2.2).

2.2.2 Statefulness, de-randomization or hash randomization

In the GPV framework, two different signatures s, s′ of a same hash H(m) can never be made public
simultaneously, because doing so breaks the security proof [GPV08, Section 6.1].

Statefulness. A first solution proposed in [GPV08, Section 6.1] is to make the scheme stateful by
maintaining a list of the signedmessages and of their signatures. However, maintaining such a state poses
a number of operational issues, so we do not consider it as a credible solution.

De-randomization. A second possibility proposed by [GPV08] is to de-randomize the signing pro-
cedure. However, pseudorandomness would need to be generated in a consistent way over all the imple-
mentations (it is not uncommon to have a same signing key used in different devices). While this solution
can be applied in a few specific usecases, we do not consider it for Falcon.

Hash randomization. A third solution is to prepend a salt r ∈ {0, 1}k to the message m before
hashing it. Provided that k is large enough, this prevents collisions from occurring. From an operational
perspective, this solution is the easiest to apply, and it is still covered by the security proof of the GPV
framework (see [GPV08, Section 6.2]). For a given security level λ and up to qs signature queries, taking
k = λ+ log2(qs) is enough to guarantee that the probability of collision is less than qs · 2−λ.
Out of the three solutions, Falcon opts for hash randomization: a salt r ∈ {0, 1}320 is randomly gener-
ated and prepended to themessage before hashing it. The bitsize 320 is equal toλ+log2(qs) forλ = 256
the highest security level required by NIST, and qs = 264 the maximal number of signature which may
be queried from a single signer. This size is actually overkill for security levels λ < 256, but fixing a single
size across all the security levels makes things easier from an API perspective: for example, one can hash a
message without knowing the security level of the private signing key.

11

2.3 NTRU Lattices

The first choice when instantiating theGPV framework is the class of lattices to use. The design rationale
obviously plays a large part in this. Indeed, if emphasis is placed on security without compromise, then
the logical choice is to use standard lattices without any additional structure, as was done e.g. in the key-
exchange scheme Frodo [BCD+16].
Our main design principle is compactness. For this reason, Falcon relies on the class of NTRU lattices,
introduced by Hoffstein, Pipher and Silverman [HPS98]; they come with an additional ring structure
which not only does allow to reduce the public keys’ size by a factor O(n), but also speeds up many
computations by a factor at least O(n/ log n). Even in the broader class of lattices over rings, NTRU
lattices are among the most compact: the public key can be reduced to a single polynomial h ∈ Zq[x] of
degree at most n − 1. In doing this we follow the idea of Stehlé and Steinfeld [SS11], who showed that
the GPV framework can be used with NTRU lattices in a provably secure way.
Compactness, however, would be useless without security. From this perspective, NTRU lattices also
have reasons to inspire confidence as they have resisted extensive cryptanalysis for about two decades, and
we parameterize them in a way which we believe makes them even more resistant.

2.3.1 Introduction to NTRU lattices

Let ϕ = xn + 1 for n = 2κ a power of two, and q ∈ N⋆. A set of NTRU secrets consists of four
polynomials f, g, F,G ∈ Z[x]/(ϕ) which verify the NTRU equation:

fG− gF = q mod ϕ (2.1)

Provided that f is invertible modulo q, we can define the polynomial h← g · f−1 mod q.
Typically, h will be a public key, whereas f, g, F,G will be secret keys. Indeed, one can check that the

matrices
[

1 h
0 q

]
and

[
f g
F G

]
generate the same lattice, but the first matrix contains two large poly-

nomials (h and q), whereas the second matrix contains only small polynomials, which allows to solve
problems as illustrated in Section 2.2. If f, g are generatedwith enough entropy, thenhwill look pseudo-
random [SS11]. However in practice, even when f, g are quite small, it remains hard to find small poly-
nomials f ′, g′ such that h = g′ · (f ′)−1 mod q. The hardness of this problem constitutes the NTRU
assumption.

2.3.2 Instantiation with the GPV framework

We now instantiate the GPV framework described in Section 2.2 over NTRU lattices:
• The public basis is A =

[
1 h⋆

]
, but this is equivalent to knowing h.

• The secret basis is
B =

[
g −f
G −F

]
(2.2)

12

One can check that the matrices A and B are indeed orthogonal: B×A⋆ = 0 mod q.

• The signature of a messagem consists of a salt r plus a pair of polynomials (s1, s2) such that s1 +
s2h = H(r∥m). We note that since s1 is completely determined bym, r and s2, there is no need
to send it: the signature can simply be (r, s2).

2.3.3 Choosing optimal parameters

Our trapdoor sampler samples signatures of norm essentially proportional to ∥B∥GS, where ∥B∥GS de-
notes the Gram-Schmidt norm of B.
Previousworks ([DLP14] and [Pre15, Sections 6.4.1 and 6.5.1]) have provided heuristic and experimental
evidence that in practice, ∥B∥GS is minimized for ∥(f, g)∥ ≈ 1.17√q. Therefore, we generate f, g as
discrete Gaussians in Z[x]/(ϕ) centered in 0, so that the expected value of ∥(f, g)∥ is about 1.17√q.
Once this is done, very efficientways to compute∥B∥GS are known, and if this value ismore than1.17√q,
new polynomials f, g’s are regenerated and the procedure starts over.

Quasi-optimality. The bound ∥B∥GS ≤ 1.17√q that we reach in practice is within a factor 1.17
of the theoretic lower bound for ∥B∥GS. Indeed, for any B of the form given in (2.2) with f, g, F,G
verifying (2.1), we have det(B) = fG− gF = q. So√q is a theoretic lower bound of ∥B∥GS.

2.4 Fast Fourier Sampling

The second choice when instantiating the GPV framework is the trapdoor sampler. A trapdoor sampler
takes as input amatrixA, a trapdoor T, a target c and outputs a short vector s such that stA = c mod q.
With the notations of Section 2.2, this is equivalent to findingv ∈ Λ⊥

q close toc0, sowemay indifferently
refer by the term “trapdoor samplers” to algorithms which perform one task or the other.
We now list the existing trapdoor samplers, their advantages and limitations. Obviously, being efficient is
important for a trapdoor sampler. However, an equally important metric is the “quality” of the sampler:
the shorter the vector s is (or equivalently, the closer v is to c0), the more secure this sampler will be.

1. Klein’s algorithm [Kle00] takes as a trapdoor the matrix B. It outputs vectors s of norm propor-
tional to ∥B∥GS, which is short and therefore good for security. On the downside, its time and
space complexity are inO(m2).

2. Just like Klein’s algorithm is a randomized version of the nearest plane algorithm, Peikert proposed
a randomized version of the round-off algorithm [Pei10]. A nice thing about it is that whenB has
a structure over rings – as in our case – then it can be made to run in time and spaceO(m logm).
However, it outputs vectors of norm proportional to the spectral norm ∥B∥2 of B. This is larger
than what we get with Klein’s algorithm, and therefore it is worse security-wise.

3. Micciancio and Peikert [MP12] proposed a novel approach in which A and its trapdoor are con-
structed in a way which allows simple and efficient trapdoor sampling. Unfortunately, it is not

13

straightforwardly compatible with NTRU lattices and yet has to reach the same level of compact-
ness as with NTRU lattices [CGM19].

4. Ducas and Prest [DP16] proposed “fast Fourier nearest plane”, a variant of Babai’s nearest plane
algorithm for lattices over rings. It proceeds in a recursive way which is very similar to the fast
Fourier transform, hence the name. This algorithm can be randomized: it results in a trapdoor
sampler which combines the quality of Klein’s algorithm, the efficiency of Peikert’s and can be
used over NTRU lattices.

Of the four approaches we just described, it seems clear to us that a randomized variant of the fast Fourier
nearest plane [DP16] is the most adequate choice given our design rationale and our previous design
choices (NTRU lattices). For this reason, it is the trapdoor sampler used in Falcon.

Sampler Fast Short output s NTRU-friendly
Klein [Kle00] No Yes Yes
Peikert [Pei10] Yes No Yes
Micciancio-Peikert [MP12] Yes Yes No
Ducas-Prest [DP16] Yes Yes Yes

Table 2.1: Comparison of the different trapdoor samplers

Choosing the standard deviation. When using a trapdoor sampler, an important parameter to
set is the standard deviation σ. If it is too low, then it is no longer guaranteed that the sampler not leak
the secret basis (and indeed, for all known samplers, a value σ = 0 opens the door to learning attacks à la
[NR06,DN12]). But if it is too high, the sampler does not return optimally short vectors and the scheme
is not as secure as it could be. So there is a compromise to be found. Our fast Fourier sampler sharesmany
similarities with Klein’s sampler, including the optimal value for σ. Following [Pre17, Section 4.4], we
take σ = ηϵ(Z2n) · ∥B∥GS.

2.5 Security

2.5.1 Known Attacks

Key Recovery. The most efficient attacks come from lattice reduction. We start by considering the

lattice generated by the columns of
[
q h
0 1

]
. After using lattice reduction on this basis, we enumerate

all lattice points in a ball of radius
√

2n · σ{f,g}, centered on the origin. With significant probability, we
are therefore able to find

[
g f

]
.

Let λ be the (2n − B)th Gram-Schmidt norm, which is approximately the norm of the shortest vector
of the lattice generated by the last B vectors projected orthogonally to the first 2n − B − 1 vectors. A
sieve algorithm performed on this projected lattice will recover all vectors of norm smaller than

√
4/3λ

14

(see [Duc18] for instance). If the projection of the key is among them, that is when
√
Bσ{f,g} ≤

√
4/3λ,

we can recover a secret key vector from its projection by using Babai’s Nearest Plane algorithm on all
sieved vectors with high probability. This is because all remaining Gram-Schmidt norms are larger than
λ, which is much larger than σ{f,g}.
For the best known lattice reduction algorithm, DBKZ [MW16, Corollary 2], we get

λ =
(
B

2πe

)1−n/B√
q,

and
(B/2πe)1−n/B√q =

√
3/4Bσ{f,g} (2.3)

Note that we conservatively assumed that we could perform a sieve algorithm in dimension B for the
same cost as the SVP oracle inside the DBKZ algorithm, which is a slight overestimate [Duc18]. It is then
easy to deduceB. Note that the given value for the Gram-Schmidt norm is correct only when the basis
is first randomized, and it is necessary to do so (asymptotically).

Forging a Signature. Forging a signature can be performed by finding a lattice point at distance
bounded by β from a random point, in the same lattice as above. This task can also be solved by lattice
reduction. One possibility is to use Kannan’s embedding, that is add (H(r||m), 0, K) to the lattice basis,
extended by a row of zeroes, which gives the following matrix: q h H(r∥m)

0 1 0
0 0 K

 .
As sieve algorithms generate many short vectors, we can certainly find among them a vector of the form
(c, ∗, K) and thenH(r||m)− c is a lattice point.
TakingK ≈ √q, the DBKZ algorithm [MW16, Corollary 2] gives as a success condition for the forgery:

(
B

2πe

)n/B√
q ≤ β. (2.4)

Interestingly, since the factor √q is also present in β, the modulus q has virtually no effect on the best
forgery attack. This is the best attack against our instantiations. We convert the blocksizeB into concrete
bit-security following the methodology of New Hope [ADPS16], sometimes called “core-SVP method-
ology”. This gives the bit-security as per [BDGL16, Laa16]:

Classical: ⌊0.292 ·B⌋ (2.5)
Quantum:⌊0.262 ·B⌋ (2.6)

This gives the following table.

15

Key recovery Forgery
n B B′ Classical Quantum B B′ Classical Quantum
512 458 418 133 121 411 374 120 108
1024 936 869 273 248 952 884 277 252

Concrete cost of the best attacks. For Falcon-512, we estimate the complexity of the best attack
as equivalent to a BKZwith block sizeB = 411. The latest method [ADH+19] suggests that the cost in
dimension n is close to solving n3

4B2 shortest vector problem instances in dimensionB. The optimization
of Ducas [Duc18] decreases the dimension of the lattice sieved by

⌊
B ln(4/3)

ln(B/(2πe)

⌉
= 37 toB′ = 374.

Taking only the first asymptotical term in the complexity of a sieve [BDGL16] leads to a number of
n3

4B2 · (
√

1.5)B′ ≈ 2120 classical operations (where
√

1.5 ≈ 20.292). This is believed to be a conserva-
tive estimate, as we neglect the lower order subexponential terms in the Nearest Neighbor Search. Each
operation includes a random access of at least one bit to a memory which has to contain 277 vectors.
A recent record [ADH+19] used 219(

√
1.5)112 cycles for a sieve in dimension 112, and an average cycle

certainly used more than 16 gates. We therefore regard an estimate of the minimum number of gates of
2120+19+4 = 2143 as conservative.
For Falcon-1024, key recovery is slightlymore efficient. The first part of the attack uses lattice reduction,
and cost more than 210 calls to a SVP instance in dimension B = 936, which corresponds to a sieve in
dimension B′ = 869. This indicates a total of at least classical 2264 operations; and a number of gates
larger than 2287.
For the quantum cost, we take [JNRV20, Table 10] as a baseline. For key search on AES-{128,256}, it
indicates a cost of {282, 2143} gates. This is far below the estimated quantum cost for breaking Falcon.

Hybrid attack. The hybrid attack [How07] combines a meet-in-the-middle algorithm and the key
recovery algorithm. It was used with great effect against NTRU, due to its choice of sparse polynomials.
This is however not the case here, so that its impact is much more modest, and counterbalanced by the
lack of sieve-enumeration.

Dense, high rank sublattice. Recent works [ABD16, CJL16, KF17] have shown that when f, g are
extremely small compared to q, it is easy to attack cryptographic schemes based onNTRU lattices. To the
contrary, in Falconwe take f, g to be not too small while q is hardly large: a side-effect is that this makes
our scheme impervious to the so-called “overstretched NTRU” attacks. In particular, even if f, g were
taken to be binary, we would have to select q > n2.83 for this property to be useful for cryptanalysis. Our
large margin should allow even significant improvements of this algorithm to be irrelevant to our case.

Algebraic attacks. While there is a rich algebraic structure in Falcon, there is no known way to
improve all the algorithms previously mentioned with respect to their general lattice equivalent by more
than a factor n2. However, there exist efficient algorithms for finding not-so-small elements in ideals of
Z[x]/(ϕ) [CDW17].

16

2.5.2 Precision of the Floating-Point Arithmetic

Trapdoor samplers usually require the use of floating-point arithmetic, and our fast Fourier sampler is
no exception. This naturally raises the question of the precision required to claim meaningful security
bounds. A naive analysis would require a precision ofO(λ) bits (notwithstanding logarithmic factors),
but this would result in a substantially slower signature generation procedure.
Inorder to analyze the requiredprecision,weuse aRényi divergence argument. As in [MW17],wedenote
by a ≲ b the fact that a ≤ b + o(b), which allows discarding negligible factors in a rigorous way. Our
fast Fourier sampler is a recursive algorithm which relies on 2n discrete samplers DZ,cj ,σj

. We suppose
that the values cj (resp. σj) are known with an absolute error (resp. relative error) at most δc (resp. δσ)
and denote byD (resp. D̄) the output distribution of our sampler with infinite (resp. finite) precision.
We can then re-use the precision analysis of Klein’s sampler in [Pre17, Section 4.5]. For any output of our
sampler with non-negligible probability, in the worst case:∣∣∣∣∣log

(
D̄(z)
D(z)

)∣∣∣∣∣ ≲ 2n
[√

154
1.312

δc + (2π + 1)δσ

]
≤ 20n(δc + δσ) (2.7)

In the average case, the value 2n in (2.7) can be replaced with
√

2n. Following the security arguments of
[Pre17, Section 3.3], this allows to claim that in average, no security loss is expected if (δc + δσ) ≤ 2−46.
To check if this is the case for Falcon, we have run Falcon in two different precisions, a high precision
of 200 bits and a standard precision of 53 bits, and compared the values of the cj, σj ’s. The result of these
experiments is that we always have (δc + δσ) ≤ 2−40: while this is higher than 2−46, the difference is of
only 6 bits. Therefore, we consider that 53 bits of precision are sufficient for NIST’s parameters (security
level λ ≤ 256, number of queries qs ≤ 264), and that the possibility of our signature procedure leaking
information about the secret basis is a purely theoretic threat.

2.6 Summary of Parameters

In this section, we summarize the interplay between parameters. The resulting parameter selection pro-
cess is automatized inSupporting_Documentation/additional/parameters.py, which also gives the
core-SVP hardness of key recovery and forgery.

Number of queries Qs, targeted security level λ and ring degree n. We start with three
initial parameters: themaximal number of signing queriesQs, the targeted security levelλ and the degree
n of the ringZ[x]/(xn + 1). As per [NIS16],Qs = 264. Also as per [NIS16], it suffices to take λ = 128
for NIST Level I and λ = 256 for NIST Level V. Finally, we take:

n = 512 for NIST Level I, (2.8)
n = 1024 for NIST Level V. (2.9)

17

Modulus: q

Number of queries: Qs Gram-Schmidt norm: ∥B∥GS

Targeted security level: λ Signatures’ standard deviation: σ

Ring degree: n Signatures maximal norm: β

BKZ blocksize for forgery: B

Security levels for forgery

(2.10)

(2.11)

(2.13)

(2.14)

(2.13)

(2.13)

(2.13)

(2.14)

(2.4)
(2.4)

(2.5), (2.6)

Figure 2.1: Parameters of Falcon and security estimates. Initial parameters are on the left side of the
figure. Parameters on the right side of the figure (which include concrete security estimates) are derived
systematically from initial parameters.

Integer modulus q. Themodulus q needs to be a prime of the form k · 2n+ 1 in order to maximize
the efficiency of the NTT. The smallest prime of this form is

q = 12 · 1024 + 1 = 12289. (2.10)

For this value, q has essentially no influence on security: it is large enough to resist hybrid attacks and
trivial attacks on SIS, and small enough to resist overstetched NTRU attacks.

Gram-Schmidt norm ∥B∥GS. Wewish to minimize ∥B∥GS. It has been shown in [DLP14, Section
3] that in practice we can ensure (upon resampling a finite number of times) that:

∥B∥GS ≤ 1.17√q. (2.11)

In order to do that, each coefficient of f and g is sampled from the discrete GaussianDZ,σ{f,g} with:

σ{f,g} = 1.17
√
q/2n. (2.12)

18

Standard deviation σ of the signatures. Signatures are sampled from a discrete Gaussian distri-
bution using the fast Fourier sampling algorithm (withB as a basis and a standard deviationσ). It suffices
to take ϵ ≤ 1/

√
Qs · λ and:

σ = 1
π
·
√

log(4n(1 + 1/ϵ))
2

· 1.17 · √q (2.13)

≥ ηϵ(Z2n) · ∥B∥GS
Following [Pre17, Lemma 6], this ensures that R2λ(D · B∥DΛ⊥

q ,σ,c) ≲ 1 + O(1)/Qs, where D is the
output of the sampler,DΛ⊥

q ,σ,c is an ideal Gaussian andR2λ is the Rényi divergence between them. Fol-
lowing [Pre17, Section 3.3],O(1) bits of security are lost by using our sampler instead ofDΛ⊥

q ,σ,c.

Maximal norm β of the signatures. During the signing and verification procedures, signatures
(s1, s2) must verify ∥(s1, s2)∥2 ≤ ⌊β2⌋ in order to be accepted, with:

β = τsig · σ
√

2n, τsig = 1.1 (2.14)

We call τsig the tailcut rate of signatures, because the expected value of ∥(s1, s2)∥ is σ
√

2n; any signature
larger than this expected value by a factor more than τsig is rejected. By applying [Lyu12, Lemma 4.4,
Item 3], the probability that a sampled signature is larger than β (hence that the signing procedure has to
restart) is upper bounded as follows:

P[∥(s1, s2)∥2 > ⌊β2⌋] ≤ τ 2n
sig · e

n(1−τ2
sig). (2.15)

2.7 Advantages and Limitations of Falcon

2.7.1 Advantages

Compactness. The main advantage of Falcon is its compactness. This doesn’t really come as a
surprise as Falconwas designed with compactness as the main criterion. Stateless hash-based signatures
often have small public keys, but large signatures. Conversely, some multivariate schemes achieve very
small signatures but require large public keys. Lattice-based schemes [LDK+19] can offer the best of
both worlds, but no NIST candidate gets |pk|+ |sig| to be as small as Falcon does.

Fast signature generation and verification. The signature generation and verification proce-
dures are very fast. This is especially true for the verification algorithm, but even the signature algorithm
can performmore than 1000 signatures per second on a moderately-powered computer.

Security in the ROM and QROM. The GPV framework comes with a security proof in the ran-
dom oracle (ROM), and a security proof in the quantum random oracle model (QROM) was later pro-
vided in [BDF+11]. See also [CD20]. In contrast, the Fiat-Shamir heuristic has only recently been proven
secure in the QROM, and under certain conditions [LZ19, DFMS19].

19

Modular design. The design of Falcon is modular. Indeed, we instantiate the GPV framework
with NTRU lattices, but it would be easy to replace NTRU lattices with another class of lattices if nec-
essary. Similarly, we use fast Fourier sampling as our trapdoor sampler, but it is not necessary either.
Actually, an extreme simplicity/speed trade-off would be to replace our fast Fourier sampler with Klein’s
sampler: signature generation would be two orders of magnitudes slower, but it would be simpler to
implement and its black-box security would be the same.

Signatures with message recovery. In [dLP16], it has been shown that a preliminary version
of Falcon can be instantiated in message-recovery mode: the message m can be recovered from the
signature sig. It makes the signature twice longer, but allows to entirely recover a message which size
is slightly less than half the size of the original signature. In situations where we can apply it, it makes
Falcon even more competitive from a compactness viewpoint.

Key recovery mode. Falcon can also be instantiated in key-recovery mode. In this mode, The
signature becomes twice longer but the key is reduced to a single hash value. In addition to incurring a
very short key, this reduces the total size |pk|+ |sig| by about 15%. More details are given in Section 3.12.

Identity-based encryption. As shown in [DLP14], Falcon can be converted into an identity-
based encryption scheme in a straightforward manner.

Easy signature verification. The signature procedure is very simple: essentially, one just needs to
compute [H(r∥m)− s2h] mod q, which boils down to a fewNTT operations and a hash computation.

2.7.2 Limitations

Delicate implementation. We believe that both the key generation procedure and the fast Fourier
sampling are non-trivial to understand and delicate to implement, and constitute the main shortcoming
of Falcon. On the bright side, the fast Fourier sampling uses subroutines of the fast Fourier transform
as well as trees, two objects most implementers are familiar with.

Floating-point arithmetic. Our signing procedure uses floating-point arithmetic with 53 bits of
precision. While this poses no problem for a software implementation, it may prove to be a major limita-
tion when implementation on constrained devices – in particular those without a floating-point unit –
will be considered.

Wepreviously listed “unclear side-channel resistance” as a limitation of Falcon, due to discreteGaussian
sampling over the integers. This is much less the case now: constant-time implementations for this step
and for the whole scheme are provided in [HPRR20] and [Por19], respectively. A challenging next step
is to implement Falcon in a masked fashion.

20

Chapter 3

Specification of Falcon

3.1 Overview

Main elements in Falcon are polynomials of degreenwith integer coefficients. The degreen is normally
a power of two (typically 512 or 1024). Computations are done modulo a monic polynomial of degree n
denoted ϕ (which is always of the form ϕ = xn + 1).
Mathematically, within the algorithm, some polynomials are interpreted as vectors, and some others as
matrices: a polynomial f moduloϕ then stands for a squaren×nmatrix, whose rows arexif mod ϕ for
all i from 0 to n− 1. It can be shown that addition and multiplication of such matrices map to addition
and multiplication of polynomials modulo ϕ. We can therefore express most of Falcon in terms of
operations on polynomials, even when we really are handling matrices that define a lattice.
The public key is a basis for a lattice of dimension 2n:[

−h In

qIn On

]
(3.1)

where In is the identity matrix of dimension n,On contains only zeros, and h is a polynomial modulo ϕ
that stands for an n× n sub-matrix, as explained above. Coefficients of h are integers that range from 0
to q − 1, where q is a specific small prime (in the recommended parameters, q = 12289).
The corresponding private key is another basis for the very same lattice, expressed as:[

g −f
G −F

]
(3.2)

where f , g, F andG are short integral polynomials modulo ϕ, that fulfil the two following relations:

h = g/f mod ϕ mod q
fG− gF = q mod ϕ

(3.3)

Such a lattice is known as a complete NTRU lattice, and the second relation, in particular, is called the
NTRU equation. Take care that while the relation h = g/f is expressed modulo q, the lattice itself, and
the polynomials, use nominally unbounded integers.

21

Key pair generation involves choosing random f and g polynomials using an appropriate distribution
that yields short, but not too short, vectors; then, the NTRU equation is solved to find matching F and
G. Keys are described in Section 3.4, and their generation is covered in Section 3.8.
Signature generation consists in first hashing the message to sign, along with a random nonce, into a
polynomial c modulo ϕ, whose coefficients are uniformly mapped to integers in the 0 to q − 1 range;
this process is described in Section 3.7. Then, the signer uses his knowledge of the secret lattice basis
(f, g, F,G) to produce a pair of short polynomials (s1, s2) such that s1 = c− s2h mod ϕ mod q. The
signature properly said is s2.
Finding small vectors s1 and s2 is, in all generality, an expensive process. Falcon leverages the special
structure of ϕ to implement it as a divide-and-conquer algorithm similar to the Fast Fourier Transform,
which greatly speeds up operations. Moreover, some “noise” is added to the sampled vectors, with care-
fully tuned Gaussian distributions, to prevent signatures from leaking too much information about the
private key. The signature generation process is described in Section 3.9.
Signature verification consists in recomputing s1 from the hashed message c and the signature s2, and
then verifying that (s1, s2) is an appropriately short vector. Signature verification can be done entirely
with integer computations modulo q; it is described in Section 3.10.
Encoding formats for keys and signatures are described in Section 3.11. In particular, since the signature
is a short polynomial s2, its elements are on average close to 0, which allows for a custom compressed
format that reduces signature size.
Recommended parameters for several security levels are defined in Section 3.13.

3.2 Technical Overview

In this section, we provide an overview of the used techniques. As Falcon is arguably math-heavy, a
clear comprehension of the mathematical principles in action goes a long way towards understanding
and implementing it.
Falcon works with elements in number fields of the form Q[x]/(ϕ), with ϕ = xn + 1 for n = 2κ

a power-of-two. We note that ϕ is a cyclotomic polynomial, therefore it can be written as ϕ(x) =∏
k∈Z×

m
(x− ζk), withm = 2n and ζ an arbitrary primitivem-th root of 1 (e.g. ζ = exp(2iπ

m
)).

The interesting part about these number fieldsQ[x]/(ϕ) is that they come with a tower-of-fields struc-
ture. Indeed, we have the following tower of fields:

Q ⊆ Q[x]/(x2 + 1) ⊆ · · · ⊆ Q[x]/(xn/2 + 1) ⊆ Q[x]/(xn + 1) (3.4)

We will rely on this tower-of-fields structure. Evenmore importantly for our purposes, by splitting poly-
nomials between their odd and even coefficients we have the following chain of space isomorphisms:

Qn ∼= (Q[x]/(x2 + 1))n/2 ∼= . . . ∼= (Q[x]/(xn/2 + 1))2 ∼= Q[x]/(xn + 1) (3.5)

22

(3.4) and (3.5) remain valid when replacing Q by Z, in which case they describe a tower of rings and a
chain of module isomorphisms.
We will see in Section 3.6 that for appropriately defined multiplications, these are actually chains of ring
isomorphisms. (3.5) will be used tomake our signature generation fast and “good”: in lattice-based cryp-
tography, the smaller the norm of signatures are, the better. So by “good” we mean that our signature
generation will output signatures with a small norm.
On one hand, classical algebraic operations in the fieldQ[x]/(xn + 1) are fast, and using themwill make
our signature generation fast. On the other hand, we will use the isomorphisms exposed in (3.5) as a
leverage to output signatures with small norm. Using these endomorphisms to their full potential entails
manipulating individual coefficients of polynomials (or of their Fourier transform) and working with
binary trees.

3.3 Notations

Cryptographic parameters. For a cryptographic signature scheme, λ denotes its security level and
Qs the maximal number of signing queries. Following [NIS16], we assumeQs = 264.

Matrices, vectors and scalars. Matrices will usually be in bold uppercase (e.g. B), vectors in bold
lowercase (e.g. v) and scalars – which include polynomials – in italic (e.g. s). We use the row convention
for vectors. The transpose of a matrix B may be noted Bt. It is to be noted that for a polynomial f , we
do not use f ′ to denote its derivative in this document.

Quotient rings. For q ∈ N⋆, we denote by Zq the quotient ring Z/qZ. In Falcon, our integer
modulus q = 12289 is prime soZq is also a finite field. We denote byZ×

q the group of invertible elements
of Zq, and by φ Euler’s totient function: φ(q) = |Z×

q | = q − 1 = 3 · 212 since q is prime.

Number fields. Falcon uses a polynomial modulus ϕ = xn + 1 (for n = 2κ). It is a monic
polynomial ofZ[x], irreducible inQ[x] and with distinct roots overC.
Let a = ∑n−1

i=0 aix
i and b = ∑n−1

i=0 bix
i be arbitrary elements of the number field Q = Q[x]/(ϕ).

We note a⋆ and call (Hermitian) adjoint of a the unique element of Q such that for any root ζ of ϕ,
a⋆(ζ) = a(ζ), where · is the usual complex conjugation overC. For ϕ = xn + 1, the Hermitian adjoint
a⋆ can be expressed simply:

a⋆ = a0 −
n−1∑
i=1

aix
n−i (3.6)

We extend this definition to vectors and matrices: the adjoint B⋆of a matrix B ∈ Qn×m (resp. a vector
v) is the component-wise adjoint of the transpose of B (resp. v):

B =
[
a b
c d

]
⇔ B⋆ =

[
a⋆ c⋆

b⋆ d⋆

]
(3.7)

23

Inner product. The inner product ⟨·, ·⟩ overQ and its associated norm ∥ · ∥ are

⟨a, b⟩ = 1
deg(ϕ)

∑
ϕ(ζ)=0

a(ζ) · b(ζ) (3.8) ∥a∥ =
√
⟨a, a⟩ (3.9)

We extend these definitions to vectors: for u = (ui)i and v = (vi)i inQm, ⟨u,v⟩ = ∑
i⟨ui, vi⟩. For

our choice of ϕ, the inner product coincides with the usual coefficient-wise inner product:

⟨a, b⟩ =
∑

0≤i<n

aibi; (3.10)

From an algorithmic point of view, computing the inner product or the norm ismost easily done by using
(3.8) if polynomials are in FFT representation, and by using (3.10) if they are in coefficient representation.

Ring Lattices. For the ringsQ = Q[x]/(ϕ) andZ = Z[x]/(ϕ), positive integersm ≥ n and a full-
rank matrix B ∈ Qn×m, we denote by Λ(B) and call lattice generated by B the setZn ·B = {zB|z ∈
Zn}. By extension, a set Λ is a lattice if there exists a matrix B such that Λ = Λ(B). We may say that
Λ ⊆ Zm is a q-ary lattice if qZm ⊆ Λ.

Discrete Gaussians. For σ, µ ∈ R with σ > 0, we define the Gaussian function ρσ,µ as ρσ,µ(x) =
exp(−|x− µ|2/2σ2), and the discrete Gaussian distributionDZ,σ,µ over the integers as

DZ,σ,µ(x) = ρσ,µ(x)∑
z∈Z ρσ,µ(z)

. (3.11)

The parameter µmay be omitted when it is equal to zero.

The Gram-Schmidt orthogonalization. AnymatrixB ∈ Qn×m can be decomposed as follows:

B = L× B̃, (3.12)

whereL is lower triangular with 1’s on the diagonal, and the rows b̃i’s of B̃ verify ⟨bi,bj⟩ = 0 for i ̸= j.
WhenB is full-rank , this decomposition is unique, and it is called the Gram-Schmidt orthogonalization
(or GSO). We will also call Gram-Schmidt norm of B the following value:

∥B∥GS = max
b̃i∈B̃
∥b̃i∥. (3.13)

The LDL⋆ decomposition. The LDL⋆ decomposition writes any full-rank Grammatrix as a prod-
uct LDL⋆, where L ∈ Qn×n is lower triangular with 1’s on the diagonal, and D ∈ Qn×n is diagonal.
The LDL⋆ decomposition and the GSO are closely related as for a basis B, there exists a unique GSO
B = L · B̃ and for a full-rank GrammatrixG, there exists a unique LDL⋆ decompositionG = LDL⋆.

24

If G = BB⋆, thenG = L · (B̃B̃⋆) · L⋆ is a valid LDL⋆ decomposition ofG. As both decompositions
are unique, the matrices L in both cases are actually the same. In a nutshell:[

L · B̃ is the GSO of B
]
⇔
[
L · (B̃B̃⋆) · L⋆ is the LDL⋆ decomposition of (BB⋆)

]
. (3.14)

The reasonwhywepresent both equivalent decompositions is because theGSO is amore familiar concept
in lattice-based cryptography, whereas the use of LDL⋆ decomposition is faster and thereforemakesmore
sense from an algorithmic point of view.

3.4 Keys

3.4.1 Public Parameters

Public keys use some public parameters that are shared by many key pairs:
1. The cyclotomic polynomial ϕ = xn + 1, where n = 2κ is a power of 2. We note that ϕ is monic

and irreducible.

2. A modulus q ∈ N⋆. In Falcon, q = 12289. We note that (ϕ mod q) splits overZq[x].

3. A real bound ⌊β2⌋ > 0.

4. Standard deviations σ and σmin < σmax.

5. A signature bytelength sbytelen.
For clarity, public parameters may be omitted (e.g. in algorithms’ headers) when clear from context.

3.4.2 Private Key

The core of a Falcon private key sk consists of four polynomials f, g, F,G ∈ Z[x]/(ϕ) with short
integer coefficients, verifying the NTRU equation:

fG− gF = q mod ϕ. (3.15)

The polynomial f shall furthermore be invertible in Zq[x]/(ϕ).
Given f and g such that there exists a solution (F,G) to the NTRU equation, F andGmay be recom-
puted dynamically, but that process is computationally expensive; therefore, it is normally expected that
at least F will be stored along f and g (given f , g and F ,G can be efficiently recomputed).
Two additional elements are computed from the private key, and may be recomputed dynamically, or
stored along f , g and F :

• The FFT representations of f , g, F andG, ordered in the form of a matrix:

B̂ =
[

FFT(g) −FFT(f)
FFT(G) −FFT(F)

]
, (3.16)

25

ℓ

ℓ0

ℓ00

σ000 σ001

ℓ01

σ010 σ011

ℓ1

ℓ10

σ100 σ101

ℓ11

σ110 σ111σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Figure 3.1: A Falcon tree of height 3

FFT(a) being the fast Fourier transform of a in the underlying ring (here,R[x]/(ϕ)).

• A Falcon tree T, described at the end of this section.
FFT representations are described in Section 3.5. The FFT representation of a polynomial formally con-
sists of n complex numbers (a complex number is normally encoded as two 64-bit floating-point values);
however, the FFT representation of a real polynomial f is redundant, because for each complex root ζ of
ϕ, its conjugate ζ is also a root ofϕ, and f(ζ) = f(ζ). Therefore, the FFT representation of a polynomial
may be stored as n/2 complex numbers, and B̂, when stored, requires 2n complex numbers.

Falcon trees. Falcon trees are binary trees defined inductively as follows:
• A Falcon tree T of height 0 consists of a single node whose value is a real σ > 0.

• A Falcon tree T of height κ verifies these properties:

– The value of its root, noted T.value, is a polynomial ℓ ∈ Q[x]/(xn + 1) with n = 2κ.

– Its left and right children, noted T.leftchild and T.rightchild, are Falcon trees of height
κ− 1.

The values of internal nodes – which are real polynomials – are stored in FFT representation (i.e. as com-
plex numbers, see Section 3.5 for a formal definition). Hence all the nodes of a Falcon tree contain
polynomials in FFT representation, except the leaves which contain real values> 0.
A Falcon tree of height 3 is represented in fig. 3.1. As illustrated by the figure, a Falcon tree can be
easily represented by an array of 2κ(1 + κ) complex numbers (or exactly half as many, if the redundancy
of FFT representation is leveraged, as explained above), and access to the left and right children can be
performed efficiently using simple pointer arithmetic.
The contents of a Falcon tree T are computed from the private key elements f , g, F and G using the
algorithm described in Section 3.8.3 (see also algorithm 4).

26

3.4.3 Public key

The Falcon public key pk corresponding to the private key sk = (f, g, F,G) is a polynomial h ∈
Zq[x]/(ϕ) such that:

h = gf−1 mod (ϕ, q). (3.17)

3.5 FFT and NTT

The FFT. Let f ∈ Q[x]/(ϕ). We note Ωϕ the set of complex roots of ϕ. We suppose that ϕ is monic
withdistrinct roots overC, so thatϕ(x) = ∏

ζ∈Ωϕ

(x−ζ). Wedenote byFFTϕ(f) the fast Fourier transform

of f with respect to ϕ:
FFTϕ(f) = (f(ζ))ζ∈Ωϕ

(3.18)

Whenϕ is clear from context, we simply note FFT(f). Wemay also use the notation f̂ to indicate that f̂ is
the FFT of f . FFTϕ is a ring isomorphism, andwe note invFFTϕ its inverse. Themultiplication in the FFT
domain is denoted by⊙. We extend the FFT and its inverse to matrices and vectors by component-wise
application.
Additions, subtractions,multiplications anddivisions of polynomialsmoduloϕ canbe computed inFFT
representations by simply performing them on each coordinate. In particular, this makesmultiplications
and divisions very efficient.
For ϕ = xn + 1, the set of complex roots ζ of ϕ is:

Ωϕ =
{

exp
(
i(2k + 1)π

n

)∣∣∣∣∣ 0 ≤ k < n

}
(3.19)

A note on implementing the FFT. There exist several ways of implementing the FFT, which may
yield slightly different results. For example, some implementations of the FFT scale our definition by
a constant factor (e.g. 1/ deg(ϕ)). Another differentiation point is the order of (the roots of) the FFT.
Common orders are the increasing order (i.e. the roots are sorted by their order on the unit circle, starting
at 1 and moving clockwise) or (variants of) the bit-reversal order. In the case of Falcon:

• The FFT is not scaled by a constant factor.

• There is no constraint on the order of the FFT, the choice is left to the implementer. However, the
chosen order shall be consistent for all the algorithms using the FFT.

Representation of polynomials in algorithms. The algorithms which specify Falcon heavily
rely on the fast Fourier transform, and some of them explicitly require that the inputs and/or outputs are
given in FFT representation. When the directive “Format:” is present at the beginning of an algorithm,
it specifies in which format (coefficient or FFT representation) the input/output polynomials shall be
represented. When the directive “Format:” is absent, no assumption on the format of the input/output
polynomials is made.

27

The NTT. The NTT (Number Theoretic Transform) is the analog of the FFT in the field Zp, where
p is a prime such that p = 1 mod 2n. Under these conditions, ϕ has exactly n roots (ωi) over Zp, and
any polynomial f ∈ Zp[x]/(ϕ) can be represented by the values f(ωi). Conversion to and from NTT
representation can be done efficiently in O(n log n) operations in Zp. When in NTT representation,
additions, subtractions,multiplications anddivisions of polynomials (moduloϕ andp) can be performed
coordinate-wise inZp.
In Falcon, the NTT allows for faster implementations of public key operations (usingZq) and key pair
generation (with variousmedium-sized primes p). Private key operations, though, rely on the fast Fourier
sampling, which uses the FFT, not the NTT.

3.6 Splitting and Merging

In this section, wemake explicit the chains of isomorphisms described in Section 3.2, by presenting split-
ting (resp. merging) operators which allow to travel these chains from right to left (resp. left to right).
Let ϕ, ϕ′ be cyclotomic polynomials such that ϕ(x) = ϕ′(x2) (for example, ϕ(x) = xn +1 and ϕ′(x) =
xn/2+1). Wedefine operatorswhich are at the heart of our signing algorithm. Our algorithms require the
ability to split an element ofQ[x]/(ϕ) into two smaller elements ofQ[x]/(ϕ′). Conversely, we require
the ability to merge two elements ofQ[x]/(ϕ′) into an element ofQ[x]/(ϕ).

The splitfft operator. Let n be the degree of ϕ, and f = ∑n−1
i=0 aix

i be an arbitrary element of
Q[x]/(ϕ), f can be decomposed uniquely as f(x) = f0(x2) + xf1(x2), with f0, f1 ∈ Q[x]/(ϕ′). In
coefficient representation, such a decomposition is straightforward to write:

f0 =
∑

0≤i<n/2
a2ix

i and f1 =
∑

0≤i<n/2
a2i+1x

i (3.20)

In (3.20), we simply split f with respect to its even or odd coefficients. With this notation, we note:

split(f) = (f0, f1). (3.21)

In Falcon, polynomials are repeatedly split, multiplied together, split again and so forth. To avoid
switching back and forth between the coefficient and FFT representation, we always perform the split
operation in the FFT representation. It is defined in splitfft (algorithm 1).
splitfft is split realized in the FFT representation: for any f, FFT(split(f)) = splitfft(FFT(f)). Readers
familiar with the Fourier transform will recognize that splitfft is a subroutine of the inverse fast Fourier
transform, more precisely the part which from FFT(f) computes two FFT’s twice smaller.

The mergefft operator. With the previous notations, we define the operatormerge as follows:

merge(f0, f1) = f0(x2) + xf1(x2) ∈ Q[x]/(ϕ). (3.22)

28

Algorithm 1 splitfft(FFT(f))
Require: FFT(f) = (f(ζ))ζ for some f ∈ Q[x]/(ϕ)
Ensure: FFT(f0) = (f0(ζ ′))ζ′ and FFT(f1) = (f1(ζ ′))ζ′ for some f0, f1 ∈ Q[x]/(ϕ′)
Format: All polynomials are in FFT representation.
1: for ζ such that ϕ(ζ) = 0 and Im(ζ) > 0 do ▷ See eq. (3.19) with 0 ≤ k < n/2
2: ζ ′ ← ζ2

3: f0(ζ ′)← 1
2 [f(ζ) + f(−ζ)]

4: f1(ζ ′)← 1
2ζ

[f(ζ)− f(−ζ)]
5: return (FFT(f0), FFT(f1))

Algorithm 2mergefft(f0, f1)
Require: FFT(f0) = (f0(ζ ′))ζ′ and FFT(f1) = (f1(ζ ′))ζ′ for some f0, f1 ∈ Q[x]/(ϕ′)
Ensure: FFT(f) = (f(ζ))ζ for some f ∈ Q[x]/(ϕ)
Format: All polynomials are in FFT representation.
1: for ζ such that ϕ(ζ) = 0 do ▷ See eq. (3.19)
2: ζ ′ ← ζ2

3: f(ζ)← f0(ζ ′) + ζf1(ζ ′)
4: return FFT(f)

Similarly to split, it is often relevant from an efficiently standpoint to performmerge in the FFT repre-
sentation. This is done inmergefft (algorithm 2).
It is immediate that split and merge are inverses of each other, and equivalently splitfft and mergefft
are inverses of each other. Just as for splitfft, readers familiar with the Fourier transform can observe that
mergefft is a step of the fast Fourier transform: it is the reconstruction step which from two small FFT’s
computes a larger FFT.

Relationship with the FFT. There is no requirement on the order in which the values f(ζ) (resp.
f0(ζ ′), resp. f1(ζ ′)) are to be stored, and the choice of this order is left to the implementer. It is however
recommended to use a unique order convention for the FFT, invFFT, splitfft and mergefft operators.
Since the FFT and invFFT need to implemented anyway, this unique convention can be achieved e.g. by
implementing splitfft as part of invFFT, andmergefft as part of the FFT.
The intricate relationships between the split andmerge operators, their counterparts in the FFT repre-
sentation and the (inverse) fast Fourier transform are illustrated in the commutative diagram of fig. 3.2.

3.6.1 Algebraic interpretation

The purpose of the splitting and merging operators that we defined is not only to represent an element
ofQ[x]/(ϕ) using two elements ofQ[x]/(ϕ′), but to do so in amanner compatible with ring operations.

29

f ∈ Q[x]/(ϕ) f0, f1 ∈ Q[x]/(ϕ′)

f̂ ∈ FFT(Q[x]/(ϕ)) f̂0, f̂1 ∈ FFT(Q[x]/(ϕ′))

FFT FFTinvFFT invFFT

split (3.21)

splitfft

merge (3.22)

mergefft

Figure 3.2: Relationship between FFT, invFFT, split,merge, splitfft andmergefft

As an illustration, we consider the operation:

a = bc (3.23)

where a, b, c ∈ Q[x]/(ϕ). For f ∈ Q[x]/(ϕ), we consider the associated endomorphism ψf : z ∈
Q[x]/(ϕ) 7→ fz. (3.23) can be rewritten as a = ψc(b). By the split isomorphism, a and b (resp. ψc) can
also be considered as elements (resp. an endomorphism) of (Q[x]/(ϕ′))2. We can rewrite (3.23) as:

[
a0 a1

]
=
[
b0 b1

] [c0 c1
xc1 c0

]
(3.24)

More formally, we have used the fact that splitting operators are isomorphisms between Q[x]/(ϕ) and
(Q[x]/(ϕ′))k, which express elements of Q[x]/(ϕ) in the (Q[x]/(ϕ′))-basis {1, x} (hence “breaking”
a, b in vectors over a smaller field). Similarly, writing the transformationmatrix of the endomorphismψc

in the basis {1, x} yields the 2× 2 matrix of (3.24).

Relationship with the field norm. The field norm (or relative norm) NL/K maps elements of a
larger field L onto a subfieldK. It is an important notion in field theory, but in this document, we only
need to define it for a simple, particular case. Let n = 2κ a power of two, L = Q[x]/(xn + 1) and
K = Q[x]/(xn/2 + 1). We define the field norm NL/K as follows:

NL/K : L → K
f 7→ f 2

0 − xf 2
1

(3.25)

where (f0, f1) = split(f) ∈ K2, see (3.20) and (3.21) for explicit formulae. When L and K are clear
from context, we simply note N(f) = NL/K(f). An equivalent formulation for NL/K is:

NL/K(f) = f(x) · f(−x) (3.26)

Both (3.25) and (3.26) are valid formulae for NL/K(f), but (3.25) is more suited to the coefficient repre-
sentation, and (3.26) is more suited to the NTT representation.

30

3.7 Hashing

As for any hash-and-sign signature scheme, the first step to sign a message or verify a signature consists
of hashing the message. In our case, the message needs to be hashed into a polynomial inZq[x]/(ϕ). An
approved extendable-output hash function (XOF), as specified in FIPS 202 [NIS15], shall be used during
this procedure.
This XOF shall have a security level at least equal to the security level targeted by our signature scheme.
In addition, we should be able to start hashing a message without knowing the security level at which it
will be signed. For these reasons, we use a unique XOF for all security levels: SHAKE-256.

• SHAKE-256 -Init () denotes the initialization of a SHAKE-256 hashing context;

• SHAKE-256 -Inject (ctx, str) denotes the injection of the data str in the hashing context ctx;

• SHAKE-256 -Extract (ctx, b) denotes extraction from a hashing context ctx of b bits of pseudo-
randomness.

HashToPoint (algorithm 3) defines the hashing process used in Falcon. It is defined for any q ≤ 216.
In Falcon, big-endian convention is used to interpret a chunk of b bits, extracted from a SHAKE-256
instance, into an integer in the 0 to 2b− 1 range (the first of the b bits has numerical weight 2b−1, the last
has weight 1).

Algorithm 3HashToPoint(str, q, n)
Require: A string str, a modulus q ≤ 216, a degree n ∈ N⋆

Ensure: An polynomial c = ∑n−1
i=0 cix

i inZq[x]
1: k ← ⌊216/q⌋
2: ctx← SHAKE-256-Init()
3: SHAKE-256-Inject(ctx, str)
4: i← 0
5: while i < n do
6: t← SHAKE-256-Extract(ctx, 16)
7: if t < kq then
8: ci ← t mod q
9: i← i+ 1
10: return c

Possible variants.

• If q > 216, then larger chunks can be extracted from SHAKE-256 at each step.

• HashToPointmay be difficult to efficiently implement in a constant-time way; constant-timeness
may be a desirable feature if the signed data is also secret.

A variant which is easier to implement with constant-time code extracts 64 bits instead of 16 at
step 6, and omits the conditional check of step 7. While the omission of the check means that

31

some outputs are slightly more probable than others, a Rényi argument [BLL+15, Pre17] allows
to claim that this variant is secure for the parameters set by NIST [NIS16].

Of course, any variant deviating from the procedure expressed in algorithm 3 implies that the same mes-
sage will hash to a different value, which breaks interoperability.

3.8 Key Pair Generation

3.8.1 Overview

The key pair generation can be decomposed in two clearly separate parts.
• Solving the NTRU equation. The first step of the key pair generation consists of computing poly-
nomials f, g, F,G ∈ Z[x]/(ϕ) which verify (3.15) – the NTRU equation. Generating f and g is
easy; the hard part is to efficiently compute polynomials F,G such that (3.15) is verified.
To do this, we propose a novel method that exploits the tower-of-rings structure highlighted in
(3.4). We use the field norm N to map the NTRU equation onto a smaller ring Z[x]/(ϕ′) of the
tower of rings, all the way down to Z. We then solve the equation in Z – using an extended gcd –
and use properties of the norm to lift the solutions (F,G) back to the original ring Z[x]/(ϕ).
Implementers should be mindful that this step does not perform modular reduction modulo q,
which leads us to handle polynomials with large coefficients (a few thousands of bits per coefficient
in the lowest levels of the recursion). See Section 3.8.2 for a formal specification of this step, and
[PP19] for an in-depth analysis.

• Computing a Falcon tree. Once suitable polynomials f, g, F,G are generated, the second part of
the key generation consists of preprocessing them into an adequate format: by adequate we mean
that this format should be reasonably compact and allow fast signature generation on-the-go.
Falcon trees are precisely this adequate format. To compute a Falcon tree, we compute the
LDL⋆ decomposition G = LDL⋆ of the matrix G = BB⋆, where

B =
[
g −f
G −F

]
, (3.27)

which is equivalent to computing the Gram-Schmidt orthogonalization B = L× B̃. If we were
usingKlein’swell-known sampler (or a variant thereof) as a trapdoor sampler, knowingLwouldbe
sufficient but a bit unsatisfactory aswewouldnot exploit the tower-of-rings structure ofQ[x]/(ϕ).
So instead of stopping there, we storeL (or ratherL10, its bottom-left and only non-trivial term) in
the root of a tree, use the splitting operators defined in Section 3.6 to “break” the diagonal elements
Dii ofD intomatricesGi over smaller ringsQ[x]/(ϕ′), at which point we create subtrees for each
matrix Gi and recursively start over the process of LDL⋆ decomposition and splitting.
The recursion continues until the matrixG has its coefficients inQ, which correspond to the bot-
tom of the recursion tree. How this is done is specified in Section 3.8.3.

32

Keygen

NTRUGen ffLDL⋆

NTRUSolve LDL⋆

Figure 3.3: Flowchart of the key generation

The main technicality of this part is that it exploits the tower-of-rings structure of Q[x]/(ϕ) by
breaking its elements onto smaller rings. In addition, intermediate results are stored in a tree, which
requires precise bookkeeping as elements of different tree levels donot live in the same field. Finally,
for performance reasons, the step is realized completely in the FFT domain.

Once these two steps are done, the rest of the key pair generation is straightforward. A final step normal-
izes the leaves of the LDL tree to turn it into a Falcon tree. The result is wrapped in a private key sk and
the corresponding public key pk is h = gf−1 mod q.
A formal description is given in algorithms 4 to 9, the main algorithm being the procedure Keygen (al-
gorithm 4). The general architecture of the key pair generation is also illustrated in fig. 3.3.

Algorithm 4 Keygen(ϕ, q)
Require: A monic polynomial ϕ ∈ Z[x], a modulus q
Ensure: A secret key sk, a public key pk
1: f, g, F,G← NTRUGen(ϕ, q) ▷ Solving the NTRU equation

2: B←
[
g −f
G −F

]
3: B̂← FFT(B) ▷ Compute the FFT for each of the 4 components {g,−f,G,−F}
4: G← B̂× B̂⋆

5: T← ffLDL⋆(G) ▷ Computing the LDL⋆ tree
6: for each leaf leaf of T do ▷Normalization step
7: leaf.value← σ/

√
leaf.value

8: sk← (B̂, T)
9: h← gf−1 mod q
10: pk← h
11: return sk, pk

3.8.2 Generating the polynomials f, g, F,G.

The first step of the key pair generation generates suitable polynomials f, g, F,G verifying (3.15). This
is specified inNTRUGen (algorithm 5). We provide a general explanation ofNTRUGen:

33

1. First, the polynomials f, g are generated randomly. A few conditions over f, g are checked to
ensure they are suitable for our purposes (line 7 to line 11). It particular:
(a) Line 7 ensures a public key h can be computed from f, g. This is true if and only if f is

invertible mod q, which is true if and only ifNTT(f) contains no coefficient set to 0.
(b) The polynomials f, g, F,Gmust allow to generate short signatures. This is true if:

γ = max
{
∥(g,−f)∥ ,

∥∥∥∥∥
(

qf ⋆

ff ⋆ + gg⋆
,

qg⋆

ff ⋆ + gg⋆

)∥∥∥∥∥
}
≤ 1.17√q. (3.28)

We recall that the norm ∥ · ∥ is easily computed by using (3.9) with either (3.8) or (3.10),
depending on the representation (FFT or coefficient).

2. Second, short polynomials F,G are computed such that f, g, F,G verify (3.15). This is done by
the procedureNTRUSolve (algorithm 6).

Algorithm 5NTRUGen(ϕ, q)
Require: A monic polynomial ϕ ∈ Z[x] of degree n, a modulus q
Ensure: Polynomials f, g, F,G
1: σ{f,g} ← 1.17

√
q/2n ▷ σ{f,g} is chosen so thatE[∥(f, g)∥] = 1.17√q

2: for i from 0 to n− 1 do
3: fi ← DZ,σ{f,g},0 ▷ See also (3.29)
4: gi ← DZ,σ{f,g},0

5: f ← ∑
i fix

i ▷ f ∈ Z[x]/(ϕ)
6: g ← ∑

i gix
i ▷ g ∈ Z[x]/(ϕ)

7: if NTT(f) contains 0 as a coefficient then ▷ Check that f is invertible mod q
8: restart
9: γ ← max

{
∥(g,−f)∥ ,

∥∥∥(qf⋆

ff⋆+gg⋆ ,
qg⋆

ff⋆+gg⋆

)∥∥∥} ▷Using (3.9) with (3.8) or (3.10)
10: if γ > 1.17√q then ▷ Check that γ = ∥B∥GS is short
11: restart
12: F,G← NTRUSolven,q(f, g) ▷ Computing F,G such that fG− gF = q mod ϕ
13: if (F,G) = ⊥ then
14: restart
15: return f, g, F,G

One way to sample z ← Dσ{f,g} (lines 5 and 6) is to perform:

z =
4096/n∑

i=1
zi, where

zi ← SamplerZ(0, σ∗),
σ∗ = 1.17 ·

√
q

8192 ≈ 1.43300980528773
(3.29)

This exploits the fact the sum of kGaussians of standard deviation σ∗ is a Gaussian of standard deviation
σ∗
√
k. Here σ∗ is chosen so that σ∗ ≤ σmax, see Section 3.9.3. Note that the reference code currently

implements a similar idea, but with a σ∗ > σmax for which we sample using a precomputed table.

34

Solving the NTRU equation (3.15)

We now explain how to solve (3.15). As mentioned in Section 3.8.1, we repeatedly use the field norm N
to map f, g to a smaller ringZ[x]/(xn/2 + 1), until we reach the ringZ. Solving (3.15) then amounts to
computing an extended GCD over Z, which is simple. We then use the multiplicative properties of the
field norm to repeatedly lift the solutions up toZ[x]/(xn + 1), at which point we have solved (3.15).

Algorithm 6NTRUSolven,q(f, g)
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two
Ensure: Polynomials F,G such that (3.15) is verified
1: if n = 1 then
2: Compute u, v ∈ Z such that uf − vg = gcd(f, g) ▷Using the extended GCD
3: if gcd(f, g) ̸= 1 then
4: abort and return⊥
5: (F,G)← (vq, uq)
6: return (F,G)
7: else
8: f ′ ← N(f) ▷ f ′, g′, F ′, G′ ∈ Z[x]/(xn/2 + 1)
9: g′ ← N(g) ▷N as defined in either (3.25) or (3.26)
10: (F ′, G′)← NTRUSolven/2,q(f ′, g′) ▷Recursive call
11: F ← F ′(x2)g(−x) ▷ F,G ∈ Z[x]/(xn + 1)
12: G← G′(x2)f(−x)
13: Reduce(f, g, F,G) ▷ (F,G) is reduced with respect to (f, g)
14: return (F,G)

NTRUSolve uses Reduce (algorithm 7) as a subroutine to reduce the size of the solutions F,G. The
principle of Reduce is a simple generalization of textbook vectors’ reduction. Given vectors u,v ∈ Zk,
reducinguwith respect tov is done by simply performingu← u−

⌊
⟨u,v⟩
⟨v,v⟩

⌉
v. Reduce does the same by

replacing Zk by (Z[x]/(ϕ))2, u by (F,G) and v by (f, g). A detailed explanation of the mathematical
and algorithmic principles underlyingNTRUSolve can be found in [PP19].

Algorithm 7 Reduce(f, g, F,G)
Require: Polynomials f, g, F,G ∈ Z[x]/(ϕ)
Ensure: (F,G) is reduced with respect to (f, g)
1: do
2: k ←

⌊
F f⋆+Gg⋆

ff⋆+gg⋆

⌉
▷ F f⋆+Gg⋆

ff⋆+gg⋆ ∈ Q[x]/(ϕ) and k ∈ Z[x]/(ϕ)
3: F ← F − kf
4: G← G− kg
5: while k ̸= 0 ▷Multiple iterations may be needed, e.g. if k is computed in small precision.

35

3.8.3 Computing a Falcon Tree

The second step of the key generation consists of preprocessing the polynomials f, g, F,G into an ade-
quate secret key format. The secret key is of the form sk = (B̂, T), where:

• B̂ =
[

FFT(g) −FFT(f)
FFT(G) −FFT(F)

]

• T is a Falcon tree computed in two steps:

1. First, a tree T is computed from G ← B̂ × B̂⋆, called an LDL tree. This is specified in
ffLDL⋆ (algorithm 9). At this point, T is a Falcon tree but it is not normalized.

2. Second, T is normalized with respect to a standard deviation σ. It is described in steps 6-7 of
Keygen (algorithm 4).

For efficiency reasons, polynomials manipulated in LDL⋆ (algorithm 8) and ffLDL⋆ (algorithm 9)
always remain in FFT representation.

At a high level, the method for computing the LDL tree at step 1 (before normalization) is simple:
1. We compute the LDL decomposition ofG: we writeG = L×D×L⋆, withL a lower triangular

matrix with 1’s on the diagonal and D a diagonal matrix. See LDL⋆ (algorithm 8).

We storeL inT.value, which is the valueof the root of T. SinceL is of the formL =
[

1 0
L10 1

]
,

we only need to store L10 ∈ Q[x]/(ϕ).

2. We then use the splitting operator to “break” each diagonal element of D into a matrix of smaller
elements. More precisely, for a diagonal element d ∈ Q[x]/(xn + 1), we consider the associated
endomorphism ψd : z ∈ Q[x]/(xn + 1) 7→ dz and write its transformation matrix over the
smaller ringQ[x]/(xn/2 +1). Following the argument of Section 3.6.1, the transformationmatrix
of ψd can be written as [

d0 d1
xd1 d0

](
=
[
d0 d1
d⋆

1 d0

])
1. (3.30)

For each diagonal element broken into a self-adjoint matrix Gi over a smaller ring, we recursively
compute its LDL tree as in step 1 and store the result in the left or right child of T (whichwe denote
T.leftchild and T.rightchild respectively).
We continue the recursion until we end up with coefficients in the ringQ.

An implementation of this “LDL tree” strategy is given in ffLDL⋆ (algorithm 9). Note that in Falcon,
the input of ffLDL⋆ is always a matrix of dimension 2 × 2, which greatly simplifies the implementation
of its subroutine LDL⋆ (algorithm 8).

1The equality in parentheses is true if and only if d is self-adjoint, i.e. d⋆ = d. This is the case in ffLDL⋆ (algorithm 9).

36

Algorithm 8 LDL⋆(G)
Require: A full-rank self-adjoint matrix G = (Gij) ∈ FFT(Q[x]/(ϕ))2×2

Ensure: The LDL⋆ decomposition G = LDL⋆ over FFT(Q[x]/(ϕ))
Format: All polynomials are in FFT representation.
1: D00 ← G00
2: L10 ← G10/G00
3: D11 ← G11 − L10 ⊙ L⋆

10 ⊙G00

4: L←
[

1 0
L10 1

]
,D←

[
D00 0
0 D11

]
5: return (L,D)

Algorithm 9 ffLDL⋆(G)
Require: A full-rank Grammatrix G ∈ FFT (Q[x]/(xn + 1))2×2

Ensure: A binary tree T
Format: All polynomials are in FFT representation.

1: (L,D)← LDL⋆(G) ▷L =
[

1 0
L10 1

]
,D =

[
D00 0
0 D11

]
2: T.value← L10
3: if (n = 2) then
4: T.leftchild← D00
5: T.rightchild← D11
6: return T
7: else
8: d00, d01 ← splitfft(D00) ▷ dij ∈ FFT

(
Q[x]/(xn/2 + 1)

)
9: d10, d11 ← splitfft(D11)

10: G0 ←
[
d00 d01
d⋆

01 d00

]
, G1 ←

[
d10 d11
d⋆

11 d10

]
▷ SinceD00, D11 are self-adjoint, (3.30) applies

11: T.leftchild← ffLDL⋆(G0) ▷Recursive calls
12: T.rightchild← ffLDL⋆(G1)
13: return T

37

3.9 Signature Generation

3.9.1 Overview

Sign

HashToPoint ffSampling Compress

SHAKE-256 SamplerZ

BaseSampler BerExp

ApproxExp

Figure 3.4: Flowchart of the signature

At a high level, the principle of the signature generation algorithm is simple: it first computes a hash value
c ∈ Zq[x]/(ϕ) from themessagem and a salt r, and it then uses its knowledge of the secret key f, g, F,G
to compute two short values s1, s2 such that s1 + s2h = c mod q.
A naiveway to find such short values (s1, s2)would be to compute t← (c, 0)·B−1, round it coefficient-
wise to a vector z = ⌊t⌉ and output (s1, s2)← (t−z)B; it fulfils all the requirements to be a legitimate
signature, but this method is known to be insecure and to leak the private key.
The proper way to generate (s1, s2) without leaking the private key is to use a trapdoor sampler (see
Section 2.4 for a brief reminder on trapdoor samplers). In Falcon, we use a trapdoor sampler called
fast Fourier sampling. The computation of the falcon tree T by ffLDL⋆ (algorithm 9) during the key pair
generation is the initialization step of this trapdoor sampler.
The heart of our signature generation, ffSampling (algorithm 11) applies a randomized rounding (ac-
cording to a discrete Gaussian distribution) on the coefficients of t. But it does so in an adaptivemanner,
using the information stored in the Falcon tree T.
At a high level, our fast Fourier sampling algorithm canbe seen as a recursive variant ofKlein’swell known
trapdoor sampler (also known as the GPV sampler). Klein’s sampler uses a matrix L (and the norm of
Gram-Schmidt vectors) as a trapdoor, whereas ours uses a tree of such matrices (or rather, a tree of their
non-trivial elements). Given t = (t0, t1) ∈ Q[x]/(ϕ))2, our algorithm first splits t1 using the splitting
operator, recursively applies itself to it (using the right child T.rightchild of T), and uses the merging
operator to lift the solution to the ringZ[x]/(ϕ); it then applies itself again recursively with t0. Note that
the recursions cannot be done in parallel: the second recursion takes into account the result of the first
recursion, and this is done using information contained in T.value.

38

The most delicate part of our signature algorithm is the fast Fourier sampling described in ffSampling,
because it makes use of the Falcon tree and of discrete Gaussians over Z. The rest of the algorithm,
including the compression of the signature, is rather straightforward to implement.
Formally, given a private key sk and a messagem, the signer uses sk to signm as follows:

1. A random salt r is generated uniformly in {0, 1}320. The concatenated string (r∥m) is then hashed
to a point c ∈ Zq[x]/(ϕ) as specified byHashToPoint (algorithm 3).

2. A (not necessarily short) preimage t of c is computed, and is then given as input to the fast Fourier
sampling algorithm, which outputs two short polynomials s1, s2 ∈ Z[x]/(ϕ) (in FFT representa-
tion) such that s1 + s2h = c mod q, as specified by ffSampling (algorithm 11).

3. s2 is encoded (compressed) to a bitstring s as specified inCompress (algorithm 17).

4. The signature consists of the pair (r, s).

Algorithm 10 Sign (m, sk, ⌊β2⌋)
Require: A messagem, a secret key sk, a bound ⌊β2⌋
Ensure: A signature sig of m
1: r← {0, 1}320 uniformly
2: c← HashToPoint(r∥m, q, n)
3: t←

(
−1

q
FFT(c)⊙ FFT(F), 1

q
FFT(c)⊙ FFT(f)

)
▷ t = (FFT(c), FFT(0)) · B̂−1

4: do
5: do
6: z← ffSamplingn(t, T)
7: s = (t− z)B̂ ▷At this point, s follows a Gaussian distribution: s ∼ D(c,0)+Λ(B),σ,0
8: while ∥s∥2 > ⌊β2⌋ ▷ Since s is in FFT representation, one may use (3.8) to compute ∥s∥2

9: (s1, s2)← invFFT(s) ▷ s1 + s2h = c mod (ϕ, q)
10: s← Compress(s2, 8 · sbytelen− 328) ▷Remove 1 byte for the header, and 40 bytes for r
11: while (s = ⊥)
12: return sig = (r, s)

3.9.2 Fast Fourier Sampling

This section describes our fast Fourier sampler: ffSampling (algorithm 11). We note that we perform
all the operations in FFT representation for efficiency reasons, but the whole algorithm could also be
executed in coefficient representation instead, at a price of aO(log n) penalty in speed.

39

Algorithm 11 ffSampling n(t, T)
Require: t = (t0, t1) ∈ FFT (Q[x]/(xn + 1))2, a Falcon tree T
Ensure: z = (z0, z1) ∈ FFT (Z[x]/(xn + 1))2

Format: All polynomials are in FFT representation.
1: if n = 1 then
2: σ′ ← T.value ▷ It is always the case that σ′ ∈ [σmin, σmax]
3: z0 ← SamplerZ(t0, σ′) ▷ Since n = 1, ti = invFFT(ti) ∈ Q and zi = invFFT(zi) ∈ Z
4: z1 ← SamplerZ(t1, σ′)
5: return z = (z0, z1)
6: (ℓ, T0, T1)← (T.value, T.leftchild, T.rightchild)
7: t1 ← splitfft(t1) ▷ t0, t1 ∈ FFT

(
Q[x]/(xn/2 + 1)

)2

8: z1 ← ffSampling n/2(t1, T1) ▷ First recursive call to ffSampling n/2

9: z1 ← mergefft(z1) ▷ z0, z1 ∈ FFT
(
Z[x]/(xn/2 + 1)

)2

10: t′0 ← t0 + (t1 − z1)⊙ ℓ
11: t0 ← splitfft(t′0)
12: z0 ← ffSampling n/2(t0, T0) ▷ Second recursive call to ffSampling n/2
13: z0 ← mergefft(z0)
14: return z = (z0, z1)

3.9.3 Sampler over the Integers

Let 1 ≤ σmin < σmax. This section shows how to sample securely Gaussian samples z ∼ DZ,σ′,µ for
any σ′ ∈ [σmin, σmax] and µ ∈ R. This is done by SamplerZ (algorithm 15), which calls BaseSampler
(algorithm 12) and BerExp (algorithm 14) as subroutines. We use the notations (>>) and (&) to denote
the bitwise right-shift and AND, respectively. We also introduce the notations J·K andUniformBits:

For any logical proposition P, JP K =

1 if P is true
0 if P is false

(3.31)

Note that J·Kneeds to be realized in constant time for our algorithms to be resistant against timing attacks.

∀k ∈ Z+, UniformBits(k) samples z uniformly in {0, 1, ..., 2k − 1}. (3.32)

BaseSampler. Let pdt be as in Table 3.1. Our first procedure is BaseSampler (algorithm 12). It
samples an integer z0 ∈ Z+ according to the distribution χ of support {0, . . . , 18} uniquely defined as:

∀i ∈ {0, . . . , 18}, χ(i) = 2−72 · pdt[i] (3.33)

Thedistributionχ is extremely close to the “half-Gaussian”DZ+,σmax in the sense thatR513(χ∥DZ+,σmax) ≤
1 + 2−78, whereR∗ is the Rényi divergence. For completeness, Table 3.1 provides the values of:

40

• the (scaled) probability distribution table pdt[i];
• the (scaled) cumulative distribution table cdt[i] = ∑

j≤i pdt[j];
• the (scaled) reverse cumulative distribution table RCDT[i] = ∑

j>i pdt[j] = 272 − cdt[i].

Table 3.1: Values of the {probability/cumulative/reverse cumulative} distribution table for the distribu-
tion χ, scaled by a factor 272.

i pdt[i] cdt[i] RCDT[i]
0 1 697 680 241 746 640 300 030 1 697 680 241 746 640 300 030 3 024 686 241 123 004 913 666
1 1 459 943 456 642 912 959 616 3 157 623 698 389 553 259 646 1 564 742 784 480 091 954 050
2 928 488 355 018 011 056 515 4 086 112 053 407 564 316 161 636 254 429 462 080 897 535
3 436 693 944 817 054 414 619 4 522 805 998 224 618 730 780 199 560 484 645 026 482 916
4 151 893 140 790 369 201 013 4 674 699 139 014 987 931 793 47 667 343 854 657 281 903
5 39 071 441 848 292 237 840 4 713 770 580 863 280 169 633 8 595 902 006 365 044 063
6 7 432 604 049 020 375 675 4 721 203 184 912 300 545 308 1 163 297 957 344 668 388
7 1 045 641 569 992 574 730 4 722 248 826 482 293 120 038 117 656 387 352 093 658
8 108 788 995 549 429 682 4 722 357 615 477 842 549 720 8 867 391 802 663 976
9 8 370 422 445 201 343 4 722 365 985 900 287 751 063 496 969 357 462 633
10 476 288 472 308 334 4 722 366 462 188 760 059 397 20 680 885 154 299
11 20 042 553 305 308 4 722 366 482 231 313 364 705 638 331 848 991
12 623 729 532 807 4 722 366 482 855 042 897 512 14 602 316 184
13 14 354 889 437 4 722 366 482 869 397 786 949 247 426 747
14 244 322 621 4 722 366 482 869 642 109 570 3 104 126
15 3 075 302 4 722 366 482 869 645 184 872 28 824
16 28 626 4 722 366 482 869 645 213 498 198
17 197 4 722 366 482 869 645 213 695 1
18 1 4 722 366 482 869 645 213 696 0

Algorithm 12 BaseSampler()
Require: -
Ensure: An integer z0 ∈ {0, . . . , 18} such that z ∼ χ ▷ χ is uniquely defined by (3.33)
1: u← UniformBits(72) ▷ See (3.32)
2: z0 ← 0
3: for i = 0, . . . , 17 do
4: z0 ← z0 + Ju < RCDT[i]K ▷Note that one should use RCDT, not pdt or cdt
5: return z0

BerExp andApproxExp. BerExp (algorithm14) and its subroutineApproxExp (algorithm13) serve
to perform rejection sampling. LetC be the following list of 64-bit numbers (in hexadecimal form):

41

C =[0x00000004741183A3, 0x00000036548CFC06, 0x0000024FDCBF140A, 0x0000171D939DE045,

0x0000D00CF58F6F84, 0x000680681CF796E3, 0x002D82D8305B0FEA, 0x011111110E066FD0,

0x0555555555070F00, 0x155555555581FF00, 0x400000000002B400, 0x7FFFFFFFFFFF4800,

0x8000000000000000].

Let f ∈ R[x] be the polynomial defined as:

f(x) = 2−63 ·
12∑

i=0
C[i] · x12−i.

f(−x) serves as a very good approximation of exp(−x) over [0, ln(2)], see [ZSS20]. This is leveraged by
ApproxExp (algorithm 13) to compute integral approximations of 263 · ccs · exp(−x) for x in a certain
range. Note that the intermediate variables y, z in ApproxExp are always in the range {0, ..., 263 − 1},
with one exception: if x = 0, then at the end of the for loop (lines 4 and 5) we have y = 263. This makes
it easy to represent x, y using, for example, the C type uint64_t.

Algorithm 13 ApproxExp(x, ccs)
Require: Floating-point values x ∈ [0, ln(2)] and ccs ∈ [0, 1]
Ensure: An integral approximation of 263 · ccs · exp(−x)
1: C = [0x00000004741183A3,0x00000036548CFC06,0x0000024FDCBF140A,0x0000171D939DE045,

0x0000D00CF58F6F84, 0x000680681CF796E3, 0x002D82D8305B0FEA, 0x011111110E066FD0,
0x0555555555070F00, 0x155555555581FF00, 0x400000000002B400, 0x7FFFFFFFFFFF4800,
0x8000000000000000]

2: y ← C[0] ▷ y and z remain in {0, ..., 263 − 1} the whole algorithm.
3: z ← ⌊263 · x⌋
4: for 1 = 1, . . . , 12 do
5: y ← C[u]− (z · y) >> 63 ▷ (z · y) fits in 126 bits, but we only need the top 63 bits
6: z ← ⌊263 · ccs⌋
7: y ← (z · y) >> 63
8: return y

Given inputs x, ccs ≥ 0,BerExp (algorithm 14) returns a single bit 1 with probability≈ ccs · exp(−x).

SamplerZ. Finally, SamplerZ (algorithm 15) use the previous algorithms as subroutines and, given
inputs µ, σ′ in a certain range, outputs an integer z ∼ DZ,σ′,µ in an isochronous manner.

Known Answer Tests (KAT). To help the proper implementation of SamplerZ (algorithm 15) and
its subroutines, Table 3.2 provides test vectors. Letσmin = 1.277 833 697 (the value ofσmin for Falcon-
512). Each line of Table 3.2 provides a tuple (µ, σ′, randombytes, z) such that when replacing internal

42

Algorithm 14 BerExp(x, ccs)
Require: Floating point values x, ccs ≥ 0
Ensure: A single bit, equal to 1 with probability≈ ccs · exp(−x)
1: s← ⌊x/ ln(2)⌋ ▷ Compute the unique decomposition x = 2s · r, with (r, s) ∈ [0, ln 2)× Z+

2: r ← x− s · ln(2)
3: s← min(s, 63)
4: z ← (2 · ApproxExp(r, ccs)− 1) >> s ▷ z ≈ 264−s · ccs · exp(−r) = 264 · ccs · exp(−x)
5: i← 64
6: do
7: i← i− 8
8: w ← UniformBits(8)− ((z >> i) & 0xFF)
9: while ((w = 0) and (i > 0)) ▷This loop does not need to be done in constant-time
10: return Jw < 0K ▷Return 1 with probability 2−64 · z ≈ ccs · exp(−x)

Algorithm 15 SamplerZ(µ, σ′)
Require: Floating-point values µ, σ′ ∈ R such that σ′ ∈ [σmin, σmax]
Ensure: An integer z ∈ Z sampled from a distribution very close toDZ,µ,σ′

1: r ← µ− ⌊µ⌋ ▷ rmust be in [0, 1)
2: ccs← σmin/σ

′ ▷ ccs helps to make the algorithm running time independent of σ′

3: while (1) do
4: z0 ← BaseSampler()
5: b← UniformBits(8) & 0x1
6: z ← b+ (2 · b− 1)z0

7: x← (z−r)2

2σ′2 − z2
0

2σ2
max

8: if (BerExp(x, ccs) = 1) then
9: return z + ⌊µ⌋

calls toUniformBits() with reading bytes from randombytes (acting as a random bytestring):

SamplerZ(µ, σ′)→ z (3.34)

For readability, Table 3.2 splits randombytes according to each iteration of SamplerZ. As an exam-
ple, line 1 of Table 3.2 indicates that for µ = −91.90471153063714, σ′ = 1.7037990414754918,
randombytes = 0fc5442ff043d66e91d1eacac64ea5450a22941edc6c and z = −92 , the equation
(3.34) is verified when running SamplerZ with randomness randombytes. In addition, SamplerZ it-
erates twice before terminating. More precisely, randombytes is used as follows:

0fc5442ff043d66e91|d1|ea︸ ︷︷ ︸
Iteration 1

| cac64ea5450a22941e|dc|6c︸ ︷︷ ︸
Iteration 2

At each iteration, the first 9 random bytes are used by BaseSampler, the next one by line 5 and the last
one(s) byBerExp. Note that at each call, BerExp has a probability 1

28 of usingmore than 1 random byte;

43

this is rare, but happens. This is illustrated by line 9 of Table 3.2, which contain an example for which
one iteration of BerExp uses 2 random bytes.
For further testing, this submission package contains more extensive and detailed test vectors. See:

Supporting_Documentation/additional/test-vector-sampler-falcon{512,1024}.txt

Table 3.2: Test vectors for SamplerZ (σmin = 1.277 833 697)

Center µ Standard deviation σ′ randombytes Output z
1 -91.90471153063714 1.7037990414754918 0fc5442ff043d66e91d1ea

cac64ea5450a22941edc6c
-92

2 -8.322564895434937 1.7037990414754918 f4da0f8d8444d1a77265c2
ef6f98bbbb4bee7db8d9b3

-8

3 -19.096516109216804 1.7035823083824078 db47f6d7fb9b19f25c36d6
b9334d477a8bc0be68145d

-20

4 -11.335543982423326 1.7035823083824078 ae41b4f5209665c74d00dc
c1a8168a7bb516b3190cb4
2c1ded26cd52aed770eca7
dd334e0547bcc3c163ce0b

-12

5 7.9386734193997555 1.6984647769450156 31054166c1012780c603ae
9b833cec73f2f41ca5807c
c89c92158834632f9b1555

8

6 -28.990850086867255 1.6984647769450156 737e9d68a50a06dbbc6477 -30
7 -9.071257914091655 1.6980782114808988 a98ddd14bf0bf22061d632 -10
8 -43.88754568839566 1.6980782114808988 3cbf6818a68f7ab9991514 -41
9 -58.17435547946095 1.7010983419195522 6f8633f5bfa5d26848668e

3d5ddd46958e97630410587c
-61

10 -43.58664906684732 1.7010983419195522 272bc6c25f5c5ee53f83c4
3a361fbc7cc91dc783e20a

-46

11 -34.70565203313315 1.7009387219711465 45443c59574c2c3b07e2e1
d9071e6d133dbe32754b0a

-34

12 -44.36009577368896 1.7009387219711465 6ac116ed60c258e2cbaeab
728c4823e6da36e18d08da
5d0cc104e21cc7fd1f5ca8
d9dbb675266c928448059e

-44

13 -21.783037079346236 1.6958406126012802 68163bc1e2cbf3e18e7426 -23
14 -39.68827784633828 1.6958406126012802 d6a1b51d76222a705a0259 -40
15 -18.488607061056847 1.6955259305261838 f0523bfaa8a394bf4ea5c1

0f842366fde286d6a30803
-22

16 -48.39610939101591 1.6955259305261838 87bd87e63374cee62127fc
6931104aab64f136a0485b

-50

44

3.10 Signature Verification

3.10.1 Overview

The signature verification procedure is much simpler than the key pair generation and the signature gen-
eration. Given a public key pk = h, a messagem, a signature sig = (r,s) and an acceptance bound ⌊β2⌋,
the verifier uses pk to verify that sig is a valid signature for the messagem as specified hereinafter:

1. The value r (called “the salt”) and themessagem are concatenated to a string (r∥m)which is hashed
to a polynomial c ∈ Zq[x]/(ϕ) as specified byHashToPoint (algorithm 3).

2. s is decoded (decompressed) to a polynomial s2 ∈ Z[x]/(ϕ), seeDecompress (algorithm 18).

3. The value s1 = c− s2h mod q is computed.

4. If ∥(s1, s2)∥2 ≤ ⌊β2⌋, then the signature is accepted as valid. Otherwise, it is rejected.

3.10.2 Specification

The specification of the signature verification is given in Verify (algorithm 16).

Algorithm 16 Verify (m, sig, pk, ⌊β2⌋)
Require: A messagem, a signature sig = (r, s), a public key pk = h ∈ Zq[x]/(ϕ), a bound ⌊β2⌋
Ensure: Accept or reject
1: c← HashToPoint(r∥m, q, n)
2: s2 ← Decompress(s, 8 · sbytelen− 328)
3: if (s2 = ⊥) then
4: reject ▷Reject invalid encodings
5: s1 ← c− s2h mod q ▷ s1 should be normalized between

⌈
− q

2

⌉
and

⌊
q
2

⌋
6: if ∥(s1, s2)∥2 ≤ ⌊β2⌋ then
7: accept
8: else
9: reject ▷Reject signatures that are too long

Computation of s1 can be performed entirely inZq[x]/(ϕ); the resulting values should then be normal-
ized to the ⌈−q/2⌉ to ⌊q/2⌋ range. In order to avoid computing a square root, the squared norm can be
computed, using only integer operations, and then compared to ⌊β2⌋.

45

3.11 Encoding Formats

3.11.1 Bits and Bytes

A byte is a sequence of eight bits (formally, an octet). Within a byte, bits are ordered from left to right.
A byte has a numerical value, which is obtained by adding the weighted bits; the leftmost bit, also called
“top bit” or “most significant”, has weight 128; the next bit has weight 64, and so on, until the rightmost
bit, which has weight 1.
Someof the encoding formats definedbelowuse sequences of bits. When a sequence of bits is represented
as bytes, the following rules apply:

• The first byte will contain the first eight bits of the sequence; the second byte will contain the next
eight bits, and so on.

• Within each byte, bits are ordered left-to-right in the same order as they appear in the source bit
sequence.

• If the bit sequence length is not a multiple of 8, up to 7 extra padding bits are added at the end of
the sequence. The extra padding bits MUST have value zero.

This handling of bits matches widely deployed standard, e.g. bit ordering in the SHA-2 and SHA-3
functions, and BIT STRING values in ASN.1.

3.11.2 Compressing Gaussians

In Falcon, the signature of a message essentially consists of a polynomial s ∈ Zq[x]/(ϕ) which co-
efficients are distributed around 0 according to a discrete Gaussian distribution of standard deviation
σ ≈ 1.55√q ≪ q. A naive encoding of swould require about ⌈log2 q⌉ · deg(ϕ) bits, which is far from
optimal for communication complexity.
In this section we specify algorithms for compressing and decompressing efficiently polynomials such as
s. The description of this compression procedure is simple:

1. For each coefficient si, a compressed string stri is defined as follows:

(a) The first bit of stri is the sign of si;

(b) The 7 next bits of stri are the 7 least significant bits of |si|, in order of significance, i.e. most
to least significant;

(c) The last bits of stri are an encoding of the most significant bits of |si| using unary coding. If
⌊|si|/27⌋ = k, then its encoding is 0 . . . 0︸ ︷︷ ︸

k times

1, which we also note 0k1;

2. The compression of s is the concatenated string str← (str0∥str1∥ . . . ∥strn−1).

3. str is padded with zeroes to a fixed width slen.

46

This encoding is based on two observations. First, since si mod 27 is close to uniform, it is pointless to
compress the 7 least significant bits of si. Second, if a Huffman table is computed for the most signifi-
cant bits of |si|, it results in the unary code we just described. So our unary code is actually a Huffman
code for the distribution of the most significant bits of |si|. A formal description is given in Compress
(algorithm 17).

Algorithm 17Compress(s, slen)
Require: A polynomial s = ∑

six
i ∈ Z[x] of degree< n, a string bitlength slen

Ensure: A compressed representation str of s of slen bits, or⊥
1: str← {} ▷ str is the empty string
2: for i from 0 to n− 1 do ▷At each step, str← (str∥stri), where stri encodes si

3: str← (str∥b), where b = 1 if si < 0, b = 0 otherwise ▷ Encode the sign of si

4: str← (str∥b6b5 . . . b0), where bj = (|si| >> j) & 0x1 ▷ Encode in binary the low bits of |si|
5: k ← |si| >> 7
6: str← (str∥0k1) ▷ Encode in unary the high bits of |si|
7: if (|str| > slen) then
8: str← ⊥ ▷Abort if str is too long
9: else
10: str← (str∥0slen−|str|) ▷ Pad str to slen bits
11: return str

The correspondingdecompression algorithm is given inDecompress (algorithm18). For anypolynomial
s ∈ Z[x] such thatCompress(s, slen) ̸= ⊥, it holds thatDecompress(Compress(s, slen), slen) = s.
We now enforce unique encodings: a polynomial s should have at most one valid encoding str. This is
done via three additional checks inDecompress:

1. only accept bitstrings of length slen = 8 · sbytelen− 328 (see lines 1 and 2);

2. only accept 000000001– and not 100000001– as a valid encoding of the coefficient 0 (see lines 9
and 10);

3. force the last bits of str to be 0 (see lines 12 and 13).

3.11.3 Signatures

A Falcon signature consists of two strings r and s. They may conceptually be encoded separately, be-
cause the salt rmust be known before beginning to hash the message itself, while the s value can be ob-
tained or verified only after the whole message has been processed. In a format that supports streamed
processing of long messages, the salt r would normally be encoded before the message, while the s value
would appear after the message bytes. However, we here define an encoding that includes both r and s.
The first byte is a header with the following format (bits indicated frommost to least significant):

0 c c 1 n n n n

47

Algorithm 18Decompress(str, slen)
Ensure: A bitstring str = (str[i])i=0,...,slen−1, a bitlength slen
Require: A polynomial s = ∑

six
i ∈ Z[x], or⊥

1: if |str| ̸= slen then ▷ Enforce fixed bitlength
2: return⊥
3: for i from 0 to (n− 1) do
4: s′

i ←
∑6

j=0 26−j · str[1 + j] ▷We recover the lowest bits of |si|.
5: k ← 0 ▷We recover the highest bits of |si|.
6: while str[8 + k] = 0 do
7: k ← k + 1
8: si ← (−1)str[0] · (s′

i + 27k) ▷We recompute si.
9: if (si = 0) and (str[0] = 1) then ▷ Enforce unique encoding if si = 0
10: return⊥
11: str← str[9 + k . . . ℓ− 1] ▷We remove the bits of str that encore si.
12: if (str ̸= 0|str|) then ▷ Enforce trailing bits at 0
13: return⊥
14: return s = ∑n−1

i=0 six
i

with these conventions:
• The leftmost bit is 0, and the fourth bit from the left is 1 (in previous versions of Falcon, these
bits may had have different values).

• Bits cc are 01 or 10 to specify the encoding method for s. Encoding 01 uses the compression
algorithm described in Section 3.11.2; encoding 10 is alternate uncompressed encoding in which
each coefficient of s is encoded over a fixed number of bits.

• Bits nnnn encode a value ℓ such that the Falcon degree is n = 2ℓ. ℓmust be in the allowed range
(1 to 10).

Following the header byte are the nonce string r (40 bytes), then the encoding of s itself.
Signatures are then normally paddedwith zeros up to the prescribed length (sbytelen). Verifiersmay also
support unpadded signatures, which do not have a fixed size, but are (on average) slightly shorter than
padded signatures. Partial padding is not valid: if the signature has padding bytes, then all padding bytes
must be zero, and the total padded length must be equal to sbytelen.
Whenusing the alternate uncompressed format (cc is10 in the header byte), all elements of s are encoded
over exactly 12 bits each (signed big-endian encoding, using two’s complement for negative integers; the
valid range is −2047 to +2047, the value−2048 being forbidden)2. This uncompressed format yields
larger signatures and is meant to support the uncommon situations in which signature values and signed
messages are secret: uncompressed signatures can be decoded and encoded with constant-time imple-
mentations that do not leak information through timing-based side channels.

2In some reduced versions of Falcon, with degree 16 or less, fewer bits may be used. These reduced versions do not offer
any security and are used only for research and tests.

48

3.11.4 Public Keys

A Falcon public key is a polynomial hwhose coefficients are considered modulo q. An encoded public
key starts with a header byte:

0 0 0 0 n n n n

with these conventions:
• The four leftmost bits are 0 (in some previous versions of Falcon, the leftmost bit could have
been non-zero).

• Bits nnnn encode a value ℓ such that the degree is n = 2ℓ. ℓmust be in the allowed range (1 to 10).
After the header byte comes the encoding of h: each value (in the 0 to q − 1 range) is encoded as a 14-bit
sequence (since q = 12289, 14 bits per value are used). The encoded values are concatenated into a bit
sequence of 14n bits, which is then represented as ⌈14n/8⌉ bytes.

3.11.5 Private Keys

Private keys use the following header byte:

0 1 0 1 n n n n

with these conventions:
• The four leftmost bits are 0101.

• Bits nnnn encode the value ℓ such that the degree is n = 2ℓ. ℓmust be in the allowed range (1 to
10).

Following the header byte are the encodings of f , g, and F , in that order. Each coordinate is encoded
over a fixed number of bits, which depends on the degree:

• Coefficients of f and g use:
– 8 bits each for degrees 2 to 32;
– 7 bits each for degrees 64 and 128;
– 6 bits each for degrees 256 and 512;
– 5 bits each for degree 1024.

• Coefficients of F use 8 bits each, regardless of the degree.
Of course, small degrees do not offer real security, and are meant only for test and research purposes. In
practical situations, the degree should be 512 or 1024.
Each coefficient uses signed encoding, with two’s complement for negative values. Moreover, theminimal
value is forbidden; e.g. when using degree 512, the valid range for a coefficient of f or g is−31 to +31;
−32 is not allowed.

49

The polynomialG is not encoded. It is recomputed when the key is loaded, thanks to the NTRU equa-
tion:

G = (q + gF)/f mod ϕ (3.35)

Since the coefficients of f , g, F andG are small, this computation can be done modulo q as well, using
the same techniques as signature verification (e.g. the NTT).

3.11.6 NIST API

The API to be implemented by candidates to the NIST call for post-quantum algorithms mandates a
different convention, in which the signed message and the signature are packed into a single aggregate
format. In this API, the following encoding is used:

• First two bytes are the “signature length” (big-endian encoding).

• Then follows the nonce r (40 bytes).

• The message data itself appears immediately after the nonce.

• The signature comes last. This signature uses a nonce-less format:

– Header byte is: 0010nnnn

– Encoded s immediately follows, using compressed encoding.
There is no signature padding; the signature has a variable length. The length specified in the first two
bytes of the package is the length, in bytes, of the signature, including its header byte, but not including
the nonce length.

3.12 A Note on the Key-Recovery Mode

Wementioned in Section 2.7 that Falcon can be implemented in key-recovery mode. While we do not
propose this mode as part of the specification, we outline here how this can be done:

• The public key becomes pk = H(h) for some collision-resistant hash functionH ;

• The signature becomes (s1, s2, r), with si = Compress(si);

• The verifier accepts the signatures if and only if:

– (s1, s2) is short;
– pk = H

(
s−1

2 (HashToPoint(r∥m, q, n)− s1)
)

We note that h = s−1
2 (HashToPoint(r∥m, q, n)− s1), so the verifier can recover h during the ver-

ification process, hence the name key-recovery mode. We also note that unlike the other modes, this
one requires s2 to be invertible mod(ϕ, q). Finally, the output of H should be 2λ bits long to ensure
collision-resistance, but if we assume that the adversary can query at most qs public keys (similarly to the
bound imposed on the number of signatures), perhaps it can be shortened to λ+ log2 qs.

50

The main impact of this mode is that the public key becomes extremely compact: |pk| = 2λ. The
signature becomes about twice larger, but the total size |pk|+ |sig| becomes about 15% shorter. Indeed,
we trade hwith s1; the bitsize of s1 can be reduced by about 35% usingCompress, whereas h cannot be
compressed efficiently (it is assumed to be computationally indistinguishable from random).

3.13 Recommended Parameters

We specify two sets of parameters that address security levels I and V as defined byNIST [NIS16, Section
4.A.5]. These can be found in Table 3.3. Core-SVP hardness is given for the best known classical (C) and
quantum (Q) algorithms.

Falcon-512 Falcon-1024
Target NIST Level I V
Ring degree n 512 1024
Modulus q 12289

Standard deviation σ 165.736 617 183 168.388 571 447
σmin 1.277 833 697 1.298 280 334
σmax 1.8205

Max. signature square norm ⌊β2⌋ 34 034 726 70 265 242
Public key bytelength 897 1 793

Signature bytelength sbytelen 666 1 280

Key-recovery:

BKZ blocksizeB (2.3)
Core-SVP hardness (C)
Core-SVP hardness (Q)

458 936
133 273
121 248

Forgery:

BKZ blocksizeB (2.4)
Core-SVP hardness (C)
Core-SVP hardness (Q)

411 952
120 277
108 252

Table 3.3: Falcon parameter sets.

51

Chapter 4

Implementation and Performances

We list here a number of noteworthy points related to implementation.

4.1 Floating-Point

Signature generation, and also part of key pair generation, involve the use of complex numbers. These
can be approximated with standard IEEE 754 floating-point numbers (“binary64” format, commonly
known as “double precision”). Each such number is encoded over 64 bits, that split into the following
elements:

• a sign s = ±1 (1 bit);

• an exponent e in the−1022 to +1023 range (11 bits);

• a mantissam such that 1 ≤ m < 2 (52 bits).
In general, the represented value is sm2e. The mantissa is encoded as 252(m − 1); it has 53 bits of
precision, but its top bit, of value 1 by definition, is omitted in the encoding.
The exponent euses 11 bits, but its range covers only 2046 values, not 2048. The two extra possible values
for that field encode special cases:

• The value zero. IEEE 754 has two zeros, that differ by the sign bit.

• Subnormals: they use the minimum value for the exponent (−1022) but the implicit top bit of
the mantissa is 0 instead of 1.

• Infinites (positive and negative).

• Erroneous values, known as NaN (Not a Number).
Apart from zero, Falcon does not exercise these special cases; exponents remain relatively close to zero;
no infinite or NaN is obtained.
The C language specification does not guarantee that its double type maps to IEEE 754 “binary64”

53

type, only that it provides an exponent range and precision that match at least that IEEE type. Support
of subnormals, infinites and NaNs is left as implementation-defined. In practice, most C compilers will
provide what the underlying hardware directly implements, and may include full IEEE support for the
special cases at the price of some non-negligible overhead, e.g. extra tests and supplementary code for
subnormals, infinites and NaNs. Common x86 CPU, in 64-bit mode, use SSE2 registers and operations
for floating-point, and the hardware already provides complete IEEE 754 support. Other processor types
have only a partial support; e.g. manyPowerPC coresmeant for embedded systemsdonot handle subnor-
mals (such values are then rounded to zeros). Falcon works properly with such limited floating-point
types.
Someprocessors donot have a FPUat all. Thesewill need touse some emulationusing integer operations.
As explained above, special cases need not be implemented.

4.2 FFT and NTT

4.2.1 FFT

The Fast Fourier Transform for a polynomial f computes f(ζ) for all roots ζ ofϕ (overC). It is normally
expressed recursively. If ϕ = xn + 1, and f = f0(x2) + xf1(x2), then the following holds for any root
ζ of ϕ:

f(ζ) = f0(ζ2) + ζf1(ζ2)
f(−ζ) = f0(ζ2)− ζf1(ζ2) (4.1)

ζ2 is a root of xn/2 + 1: thus, the FFT of f is easily computed, with n/2multiplications and n additions
or subtractions, from the FFT of f0 and f1, both being polynomials of degree less than n/2, and taken
modulo ϕ′ = xn/2 + 1. This leads to a recursive algorithm of costO(n log n) operations.
The FFT can be implemented iteratively, with minimal data movement and no extra buffer: in the equa-
tions above, the computed f(ζ) and f(−ζ)will replace f0(ζ2) and f1(ζ2). This leads to an implementa-
tion known as “bit reversal”, due to the resulting ordering of the f(ζ): if ζj = ei(π/2n)(2j+1), then f(ζj)
ends up in slot rev(j), where rev is the bit-reversal function over log2 n bits (it encodes its input in binary
with left-to-right order, then reinterprets it back as an integer in right-to-left order).
In the iterative, bit-reversed FFT, the first step is computing the FFT of n/2 sub-polynomials of degree
1, corresponding to source index pairs (0, n/2), (1, n/2 + 1), and so on.
Some noteworthy points for FFT implementation in Falcon are the following:

• The FFT uses a table of pre-computed roots ζj = ei(π/2n)(2j+1). The inverse FFT nominally
requires, similarly, a table of inverses of these roots. However, ζ−1

j = ζj ; thus, inverses can be
efficiently recomputed by negating the imaginary part.

• ϕ has n distinct roots in C, leading to n values f(ζj), each being a complex number, with a real
and an imaginary part. Storage space requirements are then 2n floating-point numbers. However,
if f is real, then, for every root ζ of ϕ, ζ is also a root of ϕ, and f(ζ) = f(ζ). Thus, the FFT repre-
sentation is redundant, and half of the values can be omitted, reducing storage space requirements

54

to n/2 complex numbers, hence n floating-point values.

• TheHermitian adjoint of f is obtained in FFT representation by simply computing the conjugate
of each f(ζ), i.e. negating the imaginary part. This means that when a polynomial is equal to
its Hermitian adjoint (e.g. ff ⋆ + gg⋆), then its FFT representation contains only real values. If
then multiplying or dividing by such a polynomial, the unnecessary multiplications by 0 can be
optimized away.

• The C language (since 1999) offers direct support for complex numbers. However, it may be con-
venient to keep the real and imaginary parts separate, for values in FFT representation. If the real
and imaginary parts are kept at indexes k and k + n/2, respectively, then some performance ben-
efits are obtained:

– The first step of FFT becomes free. That step involves gathering pairs of coefficients at in-
dexes (k, k + n/2), and assembling them with a root of x2 + 1, which is i. The source
coefficients are still real numbers, thus (f0, fn/2) yields f0 + ifn/2, whose real and imaginary
parts must be stored at indexes 0 and n/2 respectively, where they already are. The whole
loop disappears.

– When a polynomial is equal to its Hermitian adjoint, all its values in FFT representation are
real. The imaginary parts are all null, and they represent the second half of the array. Storage
requirements are then halved, without requiring any special reordering or move of values.

4.2.2 NTT

The Number Theoretic Transform is the analog of the FFT, in the finite field Zp of integers modulo a
prime p. ϕ = xn + 1 will have roots in Zp if and only if p = 1 mod 2n. The NTT, for an input
polynomial f whose coefficients are integers modulo p, computes f(ω) mod p for all rootsω of ϕ inZp.
Signature verification is naturally implemented modulo q; that modulus is chosen precisely to be NTT-
friendly:

q = 12289 = 1 + 12 · 2048.

Computations modulo q can be implemented with pure 32-bit integer arithmetics, avoiding divisions
and branches, both being relatively expensive. For instance, modular addition of x and y may use this
function:

static inline uint32_t
mq_add(uint32_t x, uint32_t y, uint32_t q)
{

uint32_t d;

d = x + y - q;
return d + (q & -(d >> 31));

}

55

This code snippet uses the fact that C guarantees operations on uint32_t to be performedmodulo 232;
since operands fits on 15 bits, the top bit of the intermediate value dwill be 1 if and only if the subtraction
of q yields a negative value.
For multiplications, Montgomery multiplication is effective:

static inline uint32_t
mq_montymul(uint32_t x, uint32_t y, uint32_t q, uint32_t q0i)
{

uint32_t z, w;

z = x * y;
w = ((z * q0i) & 0xFFFF) * q;
z = ((z + w) >> 16) - q;
return z + (q & -(z >> 31));

}

The parameter q0i contains 1/q mod 216, a value which can be hardcoded since q is also known at
compile-time. Montgomery multiplication, given x and y, computes xy/(216) mod q. The interme-
diate value z can be shown to be less than 2q, which is why a single conditional subtraction is sufficient.
Modular divisions are not needed for signature verification, but they are handy for computing the public
keyh from f anf g, as part of key pair generation. Inversion of xmodulo q can be computed in a number
of ways; exponentation is straightforward: 1/x = xq−2 mod q. For 12289, minimal addition chains
on the exponent yield the result in 18 Montgomery multiplications (assuming input and output are in
Montgomery representation).
Key pair generation may also use the NTT, modulo a number of small primes pi, and the branchless
implementation techniques described above. The choice of the size of such small moduli pi depends on
the abilities of the current architecture. The Falcon reference implementation, that aims at portability,
uses moduli pi which are slightly below 231, a choice which has some nice properties:

• Modular reductions after additions or subtractions can be computed with pure 32-bit unsigned
arithmetics.

• Values may fit in the signed int32_t type.

• When doing Montgomery multiplications, intermediate values are less than 263 and thus can be
managed with the standard type uint64_t.

On a 64-bit machine with 64× 64→ 128 multiplications, 63-bit moduli would be a nice choice.

4.3 LDL Tree

From the private key properly said (the f , g, F andG short polynomials), signature generation involves
twomain steps: building the LDL tree, and then using it to sample a short vector. The LDL tree depends

56

only on the private key, not the data to be signed, and is reusable for an arbitrary number of signatures;
thus, it can be considered part of the private key. However, that tree is rather bulky (about 90 kB for
n = 1024), and will use floating-point values, making its serialization complex to define in all generality.
Therefore, the Falcon reference code rebuilds the LDL tree dynamically when the private key is loaded;
its API still allows a built tree to be applied to many signature generation instances.
It would be possible to regenerate the LDL tree on the go, for a computational overhead similar to that
of sampling the short vector itself; this would save space, since at no point would the full tree need to
be present in RAM, only a path from the tree root to the current leaf. For degree n, a saved path would
amount to about 2n floating-point values, i.e. roughly 16 kB. On the other hand, computational cost per
signature would double.
Both LDL tree construction and sampling involve operations on polynomials, includingmultiplications
(and divisions). It is highly recommended to use FFT representation, sincemultiplication and division of
two degree-n polynomials in FFT representation requires only n elementary operations. The LDL tree
is thus best kept in FFT.

4.4 Key Pair Generation

4.4.1 Gaussian Sampling

The f and g polynomials must be generated with an appropriate distribution. It is sufficient to generate
each coefficient independently, with a Gaussian distribution centered on 0; values are easily tabulated.

4.4.2 Filtering

As per the Falcon specification, once f and g have been generated, some tests must be applied to deter-
mine their appropriateness:

• (g,−f) and its orthogonalized version must be short enough.

• f must be invertible modulo ϕ and q; this is necessary in order to be able to compute the public
key h = g/f mod ϕ mod q. In practice, the NTT is used on f : all the resulting coefficients of f
in NTT representation must be distinct from zero. Computing h is then straightforward.

• The Falcon reference implementation furthermore requires that Res(f, ϕ) and Res(g, ϕ) be
both odd. If they are both even, the NTRU equation does not have a solution, but our imple-
mentation cannot tolerate that one is even and the other is odd. Computing the resultant modulo
2 is inexpensive; here, this is equal to the sum of the coefficients modulo 2.

If any of these tests fails, new (f, g) must be generated.

57

4.4.3 Solving The NTRU Equation

Solving the NTRU equation is formally a recursive process. At each depth:
1. Input polynomials f and g are received as input; they are modulo ϕ = xn + 1 for a given n.

2. New values f ′ = N(f) and g′ = N(g) are computed; they live modulo ϕ′ = xn/2 + 1, i.e. half
the degree of ϕ. However, their coefficients are typically twice longer than those of f and g.

3. The solver is invoked recursively over f ′ and g′, and yields a solution (F ′, G′) such that

f ′G′ − g′F ′ = q.

4. Unreduced values (F,G) are generated, as:

F = F ′(x2)g′(x2)/g(x) mod ϕ
G = G′(x2)f ′(x2)/f(x) mod ϕ

(4.2)

F andG are modulo ϕ (of degree n), and their coefficients have a size which is about three times
that of the coefficients of inputs f and g.

5. Babai’s nearest plane algorithm is applied, to bring coefficients of F and G down to that of the
coefficients of f and g.

RNS and NTT

The operations implied in the recursion are much easier when operating on the NTT representation of
polynomials. Indeed, if working modulo p, and ω is a root of xn + 1 modulo p, then:

f ′(ω2) = N(f)(ω2) = f(ω)f(−ω)
F (ω) = F ′(ω2)g(−ω) (4.3)

Therefore, the NTT representations of f ′ and g′ can be easily computed from the NTT representations
of f and g; and, similarly, the NTT representation of F andG (unreduced) are as easily obtained from
the NTT representations of F ′ andG′.
This naturally leads to the use of a Residue Number System (RNS), in which a value x is encoded as a
sequence of values xj = x mod pj for a number of distinct small primes pj . In the Falcon reference
implementation, the pj are chosen such that pj < 231 (to make computations easy with pure integer
arithmetics) and pj = 1 mod 2048 (to allow the NTT to be applied).
Conversion from the RNS encoding to a plain integer in base 231 is a straightforward application of
the Chinese Remainder Theorem; if done prime by prime, then the only required big-integer primitives
will be additions, subtractions, and multiplication by a one-word value. In general, coefficient values are
signed, while the CRT yields values ranging from 0 to

∏
pj − 1; normalisation is applied by assuming

that the final value is substantially smaller, in absolute value, than the product of the used primes pj .

58

Coefficient Sizes

Key pair generation has the unique feature that it is allowed occasional failures: it may reject some cases
which are nominally valid, but do not match some assumptions. This does not induce any weakness
or substantial performance degradation, as long as such rejections are rare enough not to substantially
reduce the space of generated private keys.
In that sense, it is convenient to use a priori estimates of coefficient sizes, to perform the relevantmemory
allocations and decide howmany small primes pj are required for the RNS representation of any integer
at any point of the algorithm. The following maximum sizes of coefficients, in bits, have been measured
over thousands of random key pairs, at various depths of the recursion:

depth max f , g std. dev. max F ,G std. dev.
10 6307.52 24.48 6319.66 24.51
9 3138.35 12.25 9403.29 27.55
8 1576.87 7.49 4703.30 14.77
7 794.17 4.98 2361.84 9.31
6 400.67 3.10 1188.68 6.04
5 202.22 1.87 599.81 3.87
4 101.62 1.02 303.49 2.38
3 50.37 0.53 153.65 1.39
2 24.07 0.25 78.20 0.73
1 10.99 0.08 39.82 0.41
0 4.00 0.00 19.61 0.49

These sizes are expressed in bits; for each depth, each category of value, and each key pair, the maximum
size of the absolute value is gathered. The array above lists the observed averages and standard deviations
for these values.
AFalconkeypair generatormay thus simply assume that values fit correspondinglydimensionedbuffers,
e.g. by using themeasured average added to, say, six times the standard deviation. This would ensure that
values almost always fit. A final test at the end of the process, to verify that the computedF andGmatch
the NTRU equation, is sufficient to detect failures.
Note that for depth 10, the maximum size ofF andG is the one resulting from the extended GCD, thus
similar to that of f and g.

Binary GCD

At the deepest recursion level, inputs f and g are plain integers (the modulus is ϕ = x + 1); a solution
can be computed directly with the Extended Euclidean Algorithm, or a variant thereof. The Falcon
reference implementation uses the binary GCD. This algorithm can be expressed in the following way:

59

• Values a, b, u0, u1, v0 and v1 are initialized and maintained with the following invariants:

a = fu0 − gv0
b = fu1 − gv1

(4.4)

Initial values are:
a = f
u0 = 1
v0 = 0
b = g
u1 = g
v1 = f − 1

(4.5)

• At each step, a or b is reduced: if a and/or b is even, then it is divided by 2; otherwise, if both
values are odd, then the smaller of the two is subtracted from the larger, and the result, now even, is
dividedby 2. Corresponding operations are applied onu0, v0,u1 and v1 tomaintain the invariants.
Note that computations on u0 and u1 are done modulo g, while computations on v0 and v1 are
done modulo f .

• Algorithm stops when a = b, at which point the common value is the GCD of f and g.
If the GCD is 1, then a solution (F,G) = (qv0, qu0) can be returned. Otherwise, the Falcon reference
implementation rejects the (f, g) pair. Note that the (rare) case of a GCD equal to q itself is also rejected;
as noted above, this does not induce any particular algorithm weakness.
The description above is a bit-by-bit algorithm. However, it can be seen that most of the decisions are
taken only on the low bits and high bits of a and b. It is thus possible to group updates of a, b and other
values by groups of, say, 31 bits, yielding much better performance.

Iterative Version

Each recursion depth involves receiving (f, g) from the upper level, and saving them for the duration of
the recursive call. Since degrees are halved and coefficients double in size at each level, the storage space
for such an (f, g) pair is mostly constant, around 13000 bits per depth. For n = 1024, depth goes to 10,
inducing a space requirement of at least 130000 bits, or 16 kB, just for that storage. In order to reduce
space requirements, the Falcon reference implementation recomputes (f, g) dynamically from start
when needed. Measures indicate a relatively low CPU overhead (about 15%).
A side-effect of this recomputation is that each recursion level has nothing to save. The algorithm thus
becomes iterative.

Babai’s Reduction

When candidates F andG have been assembled, they must be reduced against the current f and g. Re-
duction is performed as successive approximate reductions, that are computed with the FFT:

60

• Coefficients of f , g,F andG are converted to floating-point values, yielding ḟ , ġ, Ḟ and Ġ. Scaling
is applied so that themaximum coefficient of Ḟ and Ġ is about 230 times themaximum coefficient
of ḟ and ġ; scaling also ensures that all values fit in the exponent range of floating-point values.

• An integer polynomial k is computed as:

k =
⌊
Ḟ ḟ ⋆ + Ġġ⋆

ḟ ḟ ⋆ + ġġ⋆

⌉
(4.6)

This computation is typically performed in FFT representation, wheremultiplication anddivision
of polynomials are easy. Rounding to integers, though,must be done in coefficient representation.

• kf and kg are subtracted fromF andG, respectively. Note that this operationmust be exact, and
is performed on the integer values, not the floating-point approximations. At high degree (i.e. low
recursion depth), RNS and NTT are used: the more efficient multiplications in NTT offset the
extra cost for converting values to RNS and back.

This process reduces the maximum sizes of coefficients ofF andG by about 30 bits at each iteration; it is
applied repeatedly as long as it works, i.e. themaximum size is indeed reduced. A failure is reported if the
final maximum size ofF andG coefficients does not fit the target size, i.e. the size of the buffers allocated
for these values.

4.5 Performances

TheFalconreference implementation achieves the followingperformanceonan Intel®Core® i5-8259U
CPU (“Coffee Lake” core, clocked at 2.3 GHz):

degree keygen (ms) keygen (RAM) sign/s vrfy/s pub length sig length
512 8.64 14336 5948.1 27933.0 897 666
1024 27.45 28672 2913.0 13650.0 1793 1 280

The following notes apply:
• For this test, in order to obtain stable benchmarks, CPU frequency scaling (“TurboBoost”) has
been disabled. This CPU can nominally scale its frequency up to 3.9 GHz (for short durations),
for a corresponding increase in performance. In particular, since all operations at degree 512 fit in
L1 cache (both code and data), one may expect performance to be proportional to frequency, up
to about 10000 signatures per second at themaximum frequency. The figures shown above are for
sustained workloads in which signatures are repeatedly computed over prolonged periods of time.

• RAM usage for key pair generation is expressed in bytes. It includes temporary buffers for all
intermediate values, including the floating-point polynomials used for Babai’s reduction.

• Public key length and average signature length are expressed in bytes. The size of public keys in-
cludes a one-byte header that identifies the degree and modulus. For signatures, compression and
padding is used, thus leading to a fixed signature length.

61

• Signature generation time does not include the LDL tree building, which is donewhen the private
key is loaded. These figures thus correspond to batch usage, when many values must be signed
with a given key. This matches, for instance, the use case of a busy TLS server. If, in a specific
scenario, keys are used only once, then the LDL tree building cost must be added to each signature
attempt; this almost doubles the signature cost, but reduces RAM usage.

• The implementation used for this benchmark is fully constant-time. It uses AVX2 and FMA op-
codes for improved performance. Compiler is Clang 10.0, with optimization flags:
-O3 -march=skylake.

62

Bibliography

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched NTRU as-
sumptions - cryptanalysis of some FHE and graded encoding schemes. In Matthew Robshaw and
Jonathan Katz, editors,CRYPTO 2016, Part I, volume 9814 ofLNCS, pages 153–178, Santa Barbara,
CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany. 16

[ADH+19] Martin R. Albrecht, Léo Ducas, GottfriedHerold, Elena Kirshanova, EamonnW. Postlethwaite, and
Marc Stevens. The general sieve kernel andnew records in lattice reduction. InYuval Ishai andVincent
Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746, Darmstadt,
Germany, May 19–23, 2019. Springer, Heidelberg, Germany. 16

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange -
A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages 327–343,
Austin, TX, USA, August 10–12, 2016. USENIX Association. 15

[Bab85] L Babai. On lovasz’ lattice reduction and the nearest lattice point problem. In Proceedings on STACS
85 2Nd Annual Symposium on Theoretical Aspects of Computer Science, New York, NY, USA, 1985.
Springer-Verlag New York, Inc. 10

[Bab86] László Babai. On lovasz’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1),
1986. 10

[BCD+16] JoppeW.Bos, CraigCostello, LéoDucas, IlyaMironov,MichaelNaehrig, ValeriaNikolaenko,Ananth
Raghunathan, andDouglas Stebila. Frodo: Take off the ring! Practical, quantum-secure key exchange
from LWE. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
ShaiHalevi, editors,ACMCCS 2016, pages 1006–1018, Vienna, Austria, October 24–28, 2016. ACM
Press. 12

[BDF+11] DanBoneh,ÖzgürDagdelen,Marc Fischlin, Anja Lehmann, Christian Schaffner, andMarkZhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 41–69, Seoul, South Korea, December 4–8, 2011.
Springer, Heidelberg, Germany. 9, 11, 19

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th SODA, pages
10–24, Arlington, VA, USA, January 10–12, 2016. ACM-SIAM. 15, 16

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Improved security
proofs in lattice-based cryptography: Using the Rényi divergence rather than the statistical distance.

63

InTetsu Iwata and JungHeeCheon, editors,ASIACRYPT 2015, Part I, volume9452ofLNCS, pages
3–24, Auckland, New Zealand, November 30 – December 3, 2015. Springer, Heidelberg, Germany.
32

[BM19] Alexandra Boldyreva and Daniele Micciancio, editors. CRYPTO 2019, Part II, volume 11693 of
LNCS, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. 64, 66

[CD20] André Chailloux and Thomas Debris-Alazard. Tight and optimal reductions for signatures based on
average trapdoor preimage sampleable functions and applications to code-based signatures. In Agge-
losKiayias,MarkulfKohlweiss, PetrosWallden, andVassilis Zikas, editors,PKC 2020, Part II, volume
12111 of LNCS, pages 453–479, Edinburgh, UK,May 4–7, 2020. Springer, Heidelberg, Germany. 19

[CDW17] Ronald Cramer, Léo Ducas, and BenjaminWesolowski. Short stickelberger class relations and appli-
cation to ideal-SVP. In Coron and Nielsen [CN17], pages 324–348. 16

[CGM19] Yilei Chen, Nicholas Genise, and PratyayMukherjee. Approximate trapdoors for lattices and smaller
hash-and-sign signatures. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 3–32, Kobe, Japan, December 8–12, 2019. Springer, Hei-
delberg, Germany. 14

[CJL16] JungHee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm forNTRUproblems and crypt-
analysis of theGGHmultilinearmapwithout a low level encodingof zero. Cryptology ePrintArchive,
Report 2016/139, 2016. http://eprint.iacr.org/2016/139. 16

[CN17] Jean-Sébastien Coron and Jesper BuusNielsen, editors. EUROCRYPT 2017, Part I, volume 10210 of
LNCS, Paris, France, April 30 –May 4, 2017. Springer, Heidelberg, Germany. 64, 65

[DFMS19] JelleDon, Serge Fehr, ChristianMajenz, andChristian Schaffner. Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In Boldyreva andMicciancio [BM19], pages 356–383.
19

[DLP14] LéoDucas, VadimLyubashevsky, andThomas Prest. Efficient identity-based encryption overNTRU
lattices. In Palash Sarkar andTetsu Iwata, editors,ASIACRYPT 2014, Part II, volume 8874 ofLNCS,
pages 22–41, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany. 6,
9, 11, 13, 18, 20

[dLP16] Rafaël del Pino, Vadim Lyubashevsky, and David Pointcheval. The whole is less than the sum of
its parts: Constructing more efficient lattice-based AKEs. In Vassilis Zikas and Roberto De Prisco,
editors, SCN 16, volume 9841 of LNCS, pages 273–291, Amalfi, Italy, August 31 – September 2,
2016. Springer, Heidelberg, Germany. 9, 20

[DN12] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of NTRUSign
countermeasures. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 433–450, Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany. 6, 10,
14

[DP16] LéoDucas andThomas Prest. Fast fourier orthogonalization. In Sergei A.Abramov, EugeneV. Zima,
and Xiao-Shan Gao, editors, Proceedings of the ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016, pages 191–198. ACM,
2016. 6, 14

64

http://eprint.iacr.org/2016/139

[Duc18] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 125–145,
Tel Aviv, Israel, April 29 –May 3, 2018. Springer, Heidelberg, Germany. 15, 16

[FKT+20] Pierre-Alain Fouque, Paul Kirchner, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Key recovery
fromGram-Schmidtnorm leakage inhash-and-sign signatures overNTRUlattices. InAnneCanteaut
and Yuval Ishai, editors,EUROCRYPT 2020, Part III, volume 12107 ofLNCS, pages 34–63, Zagreb,
Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 7

[GGH97] OdedGoldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 112–131, Santa
Barbara, CA, USA, August 17–21, 1997. Springer, Heidelberg, Germany. 6, 10

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages
197–206, Victoria, BC, Canada, May 17–20, 2008. ACM Press. 5, 6, 9, 10, 11

[HHP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In Marc Joye, editor, CT-RSA 2003, vol-
ume 2612 of LNCS, pages 122–140, San Francisco, CA, USA, April 13–17, 2003. Springer, Heidel-
berg, Germany. 6, 10

[How07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 150–169, Santa Barbara,
CA, USA, August 19–23, 2007. Springer, Heidelberg, Germany. 16

[HPRR20] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous gaussian sampling:
From inception to implementation. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography - 11th International Conference, PQCrypto 2020, pages 53–71, Paris, France, April 15–17
2020. Springer, Heidelberg, Germany. 7, 20

[HPS98] JeffreyHoffstein, Jill Pipher, and JosephH. Silverman. NTRU:A ring-based public key cryptosystem.
In Joe Buhler, editor, Algorithmic Number Theory, Third International Symposium, ANTS-III,
Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer, 1998. 12

[JNRV20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing grover ora-
cles for quantumkey search onAES andLowMC. InAnneCanteaut andYuval Ishai, editors,EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 280–310, Zagreb, Croatia, May 10–14, 2020.
Springer, Heidelberg, Germany. 16

[KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched NTRU parame-
ters. In Coron and Nielsen [CN17], pages 3–26. 16

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In David B. Shmoys,
editor, 11th SODA, pages 937–941, San Francisco, CA, USA, January 9–11, 2000. ACM-SIAM. 9, 10,
13, 14

65

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4: Testing and
benchmarkingNIST PQC onARM cortex-M4. Cryptology ePrint Archive, Report 2019/844, 2019.
https://eprint.iacr.org/2019/844. 7

[KRVV19] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. Pushing
the speed limit of constant-time discrete gaussian sampling. A case study on falcon. DAC, 2019. 7

[Laa16] Thijs Laarhoven. Search problems in cryptography: from fingerprinting to lattice sieving. PhD thesis,
Department of Mathematics and Computer Science, 2 2016. Proefschrift. 15

[LAZ18] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based (linkable) ring signa-
ture. Cryptology ePrint Archive, Report 2018/857, 2018. https://eprint.iacr.org/2018/
857. 7

[LDK+19] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-DILITHIUM. Technical report, National Institute
of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. 19

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In Pointcheval and Johansson [PJ12],
pages 738–755. 19

[LZ19] Qipeng Liu andMark Zhandry. Revisiting post-quantum Fiat-Shamir. In Boldyreva andMicciancio
[BM19], pages 326–355. 19

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
Pointcheval and Johansson [PJ12], pages 700–718. 13, 14

[MW16] DanieleMicciancio andMichaelWalter. Practical, predictable lattice basis reduction. InMarc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 820–
849, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 15

[MW17] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient, generic,
constant-time. In JonathanKatz andHovav Shacham, editors,CRYPTO 2017, Part II, volume 10402
of LNCS, pages 455–485, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Ger-
many. 17

[NIS15] NIST. Sha-3 standard: Permutation-based hash and extendable-output functions, 2015. http://
dx.doi.org/10.6028/NIST.FIPS.202. 31

[NIS16] NIST. Submission requirements and evaluation criteria for thepost-quantumcryptography standard-
ization process, 2016. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.
7, 8, 17, 23, 32, 51

[NR06] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU
signatures. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 271–288,
St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. 6, 10, 14

66

https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2018/857
https://eprint.iacr.org/2018/857
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[OSHG19] Tobias Oder, Julian Speith, Kira Höltgen, and Tim Güneysu. Towards practical microcontroller im-
plementation of the signature scheme Falcon. In Jintai Ding and Rainer Steinwandt, editors, Post-
Quantum Cryptography - 10th International Conference, PQCrypto 2019, pages 65–80, Chongqing,
China, May 8–10 2019. Springer, Heidelberg, Germany. 7

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 80–97, Santa Barbara, CA, USA, August 15–19, 2010.
Springer, Heidelberg, Germany. 9, 13, 14

[PFH+17] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, WilliamWhyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Technology, 2017. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions. 8

[PFH+19] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, WilliamWhyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Technology, 2019. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions. 8

[PJ12] David Pointcheval and Thomas Johansson, editors. EUROCRYPT 2012, volume 7237 of LNCS,
Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany. 66

[Por19] ThomasPornin. Newefficient, constant-time implementations of Falcon. Cryptology ePrintArchive,
Report 2019/893, 2019. https://eprint.iacr.org/2019/893. 7, 20

[PP19] Thomas Pornin and Thomas Prest. More efficient algorithms for the NTRU key generation using
the field norm. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 ofLNCS,
pages 504–533, Beijing, China, April 14–17, 2019. Springer, Heidelberg, Germany. 7, 32, 35

[Pre15] Thomas Prest. Gaussian Sampling in Lattice-Based Cryptography. Theses, ÉcoleNormale Supérieure,
December 2015. 13

[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using theRényi divergence. InTsuyoshi
Takagi and Thomas Peyrin, editors,ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 347–
374, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany. 14, 17, 19, 32

[SKD20] Dimitrios Sikeridis, Panos Kampanakis, andMichael Devetsikiotis. Post-quantum authentication in
TLS 1.3: A performance study. In NDSS 2020, San Diego, CA, USA, February 23-26, 2020. The
Internet Society. 7

[SS11] Damien Stehlé andRon Steinfeld. MakingNTRUas secure as worst-case problems over ideal lattices.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 27–47, Tallinn,
Estonia, May 15–19, 2011. Springer, Heidelberg, Germany. 6, 12

[ZSS20] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. FACCT: fast, compact, and constant-time
discrete gaussian sampler over integers. IEEE Trans. Computers, 69(1):126–137, 2020. 7, 42

67

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/893

	Introduction
	Genealogy of Falcon
	Subsequent Related Work
	NIST Requirements
	Changelog

	The Design Rationale of Falcon
	A Quest for Compactness
	The Gentry-Peikert-Vaikuntanathan Framework
	Features and instantiation of the GPV framework
	Statefulness, de-randomization or hash randomization

	NTRU Lattices
	Introduction to NTRU lattices
	Instantiation with the GPV framework
	Choosing optimal parameters

	Fast Fourier Sampling
	Security
	Known Attacks
	Precision of the Floating-Point Arithmetic

	Summary of Parameters
	Advantages and Limitations of Falcon
	Advantages
	Limitations

	Specification of Falcon
	Overview
	Technical Overview
	Notations
	Keys
	Public Parameters
	Private Key
	Public key

	FFT and NTT
	Splitting and Merging
	Algebraic interpretation

	Hashing
	Key Pair Generation
	Overview
	Generating the polynomials f, g, F, G.
	Computing a Falcon Tree

	Signature Generation
	Overview
	Fast Fourier Sampling
	Sampler over the Integers

	Signature Verification
	Overview
	Specification

	Encoding Formats
	Bits and Bytes
	Compressing Gaussians
	Signatures
	Public Keys
	Private Keys
	NIST API

	A Note on the Key-Recovery Mode
	Recommended Parameters

	Implementation and Performances
	Floating-Point
	FFT and NTT
	FFT
	NTT

	LDL Tree
	Key Pair Generation
	Gaussian Sampling
	Filtering
	Solving The NTRU Equation

	Performances

