
New E�icient, Constant-Time
Implementations of Falcon

Thomas Pornin

NCCGroup, thomas.pornin@nccgroup.com

Abstract. A new implementation of Falcon is presented. It solves longstanding is-
sues in the existing reference code: the new implementation is constant-time, it does
not require floating-point hardware (though it can use such hardware for better per-
formance), it uses less RAM, and achieves much better performance on both large sys-
tems (x86 with Skylake cores, POWER8,...) and small microcontrollers (ARMCortex
M4). In particular, signature generation with Falcon-512 takes less than 390k cycles on
a Skylake (82k cycles only for verification), and about 19.4 million cycles on an ARM
Cortex M4.

1 Introduction
Falcon[9] is a post-quantum signature algorithm, submitted to the NIST Post Quantum
Cryptography Standardization Process; Falcon has been retained for Round 2. We present
here a new implementation of Falcon that solves some issues with the reference code as sub-
mitted.

The new implementation is constant-time. This is obtained from several charac-
teristics:

– A new Gaussian sampler, designed by Prest, Ricosset and Rossi[10], is used. The new
sampler uses rejection sampling with carefully tuned parameters such that observation
of the rejection rate yields no satistically exploitable information within the security pa-
rameters of Falcon.

– Use of floating-point has been optimized to avoid any non-constant-time operation dur-
ing the signature process. In particular, divisions and square roots appear only in key
generation and cannot yield more than negligible information on the private key.

– All memory accesses are done at non-secret addresses. The memory access pattern does
not depend on any secret information, both for key generation and signature generation.

Floating-point support is not required. While the new implementation can use
floating-point hardware when available, it also includes floating-point emulation code that
uses only integer operations. This emulation code is fully constant-time for all values that
may appear as part of Falcon, and is portable to all platforms with a C99 compiler and the
usual fixed-width integer types (uint32_t, uint64_t).

The new implementation is fast and RAM-e�icient. When AVX2 opcodes are
supported, thenew implementation canuse them;withFalcon-512on an IntelCore i7-6567U
at 3.3 GHz, the number of signatures generated per second is over 9000. On the other hand,

a variant with reduced RAMusage has been implemented; it can compute Falcon-512 signa-
tures within less than 40 kB of RAM for temporary values, and negligible stack space usage,
while still achieving more than 4000 signatures per second.

On ARM Cortex M4 CPUs, dedicated inline assembly routines have been added to im-
prove performance; the variant with reduced RAM usage can compute a Falcon-512 signa-
ture in 41.1 million cycles, a figure which can be brought down to 19.4 million cycles if an
“expanded private key” can be used (the expanded key is computed from the normal private
key in about 16.2 million cycles, and uses 57.3 kB of RAM).

The new implementation is open source (MIT license) and available on the Falcon Web
site:

https://falcon-sign.info/

The following sections describe various facets of this implementation.

2 Falcon Overview
Falcon is based on NTRU lattices. Operations involve polynomials in Q[X], taken modulo
ϕ = Xn + 1, where n is a power of two (n = 512 for Falcon-512, 1024 for Falcon-1024).
Public keys, private keys and signatures use polynomials whose coefficients are integers (i.e.
part of Z[X]); however, some intermediate values are polynomials whose coefficients are not
integers.

Coefficients for private key elements are small integers (typically within the−127 to+127
range). The private key consists in four such polynomials called f , g, F andG, which fulfil the
NTRU equation:

fG − gF = q mod ϕ

where q = 12289 = 3×212+1 (a fixed prime integer). The public key consists in a polynomial
h = Z[X]whose coefficients are between 0 and q − 1, and such that:

fh = g mod ϕ mod q

A signature value, finally, is a polynomial with small integer coefficients, but these coefficients
are slightly larger than those of keys (they can go up to about ±1080).

A polynomial f ∈ Q[X]/ϕ stands for an n × n matrix such that row i consists in the
coefficients of xif mod ϕ. Addition and multiplication of such matrices then naturally map
to addition andmultiplication of the corresponding polynomials, takenmoduloϕ. Thus, the
private key is actually a short basis for a 2n × 2n lattice:

B =
[
g −f
G −F

]
while the public key is another basis for the same lattice, but with larger vectors:

P =
[
−h In
qIn On

]
where In andOn are the identity and zero n × nmatrices, respectively.

For a messagem, the signature process goes thus:

2

– The signer generates a new random nonce r.
– The concatenationof thenonce r andmessagem is hashed into apolynomial c ∈ Z[X]/ϕ

with coefficients in the 0 to q − 1 range.
– The signer uses his knowledge of the private key to generate two small polynomials s1

and s2 such that:
s1 + s2h = c mod ϕ mod q

The signature itself is the s2 polynomial, along with the nonce r.

Signature verification consists in recomputing c from the nonce r and message m, then
recomputing s1 = c− s2h mod ϕ mod q, and finally verifying that the aggregate vector (s1, s2)
(of dimension 2n) indeed has a low enough norm.

The verification can be done entirely with computations over integers modulo q, and
since 2n divides q − 1, NTT can be used to speed multiplications up. This makes Falcon
signature verification very efficient, both in terms of speed and of RAM usage.

Signature generation, on the other hand, uses a complicated process called Fourier sam-
pling, which splits polynomials in a way similar to the Fast Fourier Transform; and, indeed,
it is best implemented by using polynomials in FFT representation.

In FFT representation, a polynomial f ∈ Q[X] is replaced with the vector of n complex
values f (ζj) where ζj are the primitive 2n-th roots of unity in C. In practice, since f has real
coefficients, f (x) = f (x) for any x ∈ C; since ζj values are pairwise conjugates of each other,
the FFT representation is redundant and half the values can be omitted. Thus, the actual FFT
representation of a polynomial f consists in n/2 complex numbers, i.e. n real (floating-point)
numbers.

Fourier sampling is a recursive mechanism, starting with matrixH = BB∗ (where B∗ is
the Hermitian adjoint of B) and a target vector t = (t0, t1) where t0 and t1 are polynomials
modulo ϕ. Each step involves the following:

1. ConsiderH to be a 2 × 2matrix whose elements are n × nmatrices.
2. DecomposeH into:

H = LDL∗

where L is “lower triangular” (the two diagonal elements are In and the upper-right el-
ement is On), and D is “diagonal” (lower-left and upper-right elements are On). This
works becauseH is auto-adjoint (H ∗ = H).

3. SplitD00 (the upper-left coefficient ofD) into even and odd-numbered coefficients, re-
sulting into half-sized polynomials (i.e. n/2 × n/2matrices). Target t1 is similarly split.

4. Perform Fourier sampling recursively at half dimension, with a n× nmatrix built out of
the two split results ofD00, andwith as target vector the two polynomials obtained from
the split of t1.

5. Recursive Fourier sampling invocation returns a “short” vector z1, in two halves of di-
mension n/2, which we merge back into a polynomial of dimension n with the inverse
transform of the “split” described above.

6. Compute t ′0 = t0 + (t1 − z1)L.
7. Split D11 and t ′0 and perform a second recursive invocation of Fourier sampling, which

returns z0.
8. Merge the two halves of z0, and return (z0, z1).

3

At the lowest level of the recursion, when polynomial degree is 1 and splitting is no longer
possible, two small integers values are sampled alongdiscreteGaussiandistributions.The cen-
ters of these distributions are given by the input target at that stage, and are not (necessarily)
integers; moreover, the standard deviations of these distributions come from the diagonal
matrixD at this stage.

Take note of the following salient points:

– Since n is divided by 2 at each recursion depth, maximum depth is log2 n (base-2 loga-
rithm). There are n leaves, i.e. there will be n invocations of the Gaussian sampler.

– The inputmatricesH andLDLdecompositions at each stage depend only on the private
key. They may be precomputed. The various L matrices, and the standard deviations,
constitute together what the Falcon specification calls the “Falcon tree” or “LDL tree”.
In our new implementation, we denote “expanded key” the combination of the Falcon
tree, and the Bmatrix in FFT representation.

– If the Falcon tree is precomputed, then it contains onematrixL of sizen×n, twomatrices
of size n/2 × n/2, and so on. Total storage size is proportional to n log2 n, since each
matrix L of size n × n is really a polynomial in Q[X]/(Xn + 1), which takes (in FFT
representation) n floating-point elements.

– If the Falcon tree is not precomputed, then the L andDmatrices along the current path
in the recursion tree must still be retained, even temporarily, for a size proportional to n.

– While the standard deviations for the sampler can be precomputed, the centers depend
on the target; thus, the actual distributions cannot be precomputed as tables. Instead,
the Gaussian sampler uses rejection sampling with a bimodal Gaussian obtained from
two half-Gaussians centered on 0 and 1. Rejection sampling involves computing expo-
nentials.

– Computation of the Falcon tree (matrices L) involves divisions; and the tree leaves are
normalized with a square root operation. However, the rest of the Fourier sampling, in-
cluding the FFT and inverse FFT operations, requires only additions, subtractions, and
multiplications.

3 Floating-Point Operations

3.1 IEEE-754
IEEE-754[6] defines formats and rounding rules for floating-point numbers. Falcon only uses
the “binary64” type, colloquially known as “double precision”. Each such value is a 64-bit
word, which splits into three parts; we number bits from 0 (rightmost, least significant) to 63
(leftmost, most significant):

– Bit 63 is the sign bit: its value s is 0 for a positive number, 1 for a negative number.
– Bits 52 to 62 constitute the exponent. The value e ranges from 0 to 2047.
– Bits 0 to 51 are themantissamwhich ranges from 0 to 252 − 1.

When e , 0 and e , 2047, this is a normal value and represents real number:

x = (−1)s2e−1075(252 +m)

4

Equivalently, the mantissam can be thought of as the fractional bits of a value between 1 and
2, its integral part being always equal to 1 and omitted from the encoding; that value is then
scaled up or down by multiplying with 2e−1023.

Special values occur with e = 0 or e = 2047:

– When e = 0 andm = 0, the value is a zero. There are two zeros: positive zero (with s = 0)
and negative zero (with s = 1). The distinction is meant to retain the sign of a product
that went “too low”: a vanishingly small negative result will be rounded to−0.0, the sign
bit in a sense remembering that the valuewas negative before rounding.The positive zero
(+0.0) is the default value (e.g. all additions and subtractions that yield a zero produce
+0.0, except when adding −0.0 to itself, in which case the result is −0.0).

– When e = 0 andm , 0, the value is denormalized (this is often described as a “subnor-
mal” value). In that case, the value is:

x′ = (−1)s2−1074m

Compared with the formula for normal values, the scaling exponent is one more than
expected, but the 252 element has disappeared (in the equivalent description, m is now
the fractional bits of a number between 0 and 1, its integral part being equal to 0).

– When e = 2047 andm = 0, the value is an infinite. Infinite values have their own rules
for additions and subtractions.

– When e = 2047 andm , 0, the value is aNaN (“not a number”). This is a placeholder
for impossible values. For instance, dividing one by zero yields an infinite, but dividing
zero by zero produces aNaN.Any operationwhere at least one operand is aNaN returns
a NaN. IEEE-754 distinguishes between “quiet NaNs” and “signalling NaNs”, depend-
ing on how the machine should react when encountering the values.

Falcon does not use infinites, NaNs or subnormals.The only special values that
may appear in Falcon are zeros. This is important: it means that we do not have to care about
the behaviour of the FPU (or emulation thereof) on such special values, in particular when
assessing constant-timeness.

In IEEE-754, any value is exact: it stands for the exact represented real number.Rounding
is applied when themathematical result of an operation cannot be represented exactly. There
are several rounding rules, but the default one is “round to nearest - even”, whichmeans that:

– Rounding goes to the nearest representable value.
– In case of a tie (the mathematical result is exactly mid-way between two successive repre-
sentable values), rounding goes to the value whose lowest mantissa bit (bit 0) is 0 (that
is, an even mantissa is preferred in case of a tie).

For instance, suppose that x = 4856738204785675 and y = 4150461049955318; these
twonumbers are exactly representable in IEEE-754binary64 values.However, their sum x+y,
which happens to be equal to 253 + 1, is not exactly representable, and stands exactly in the
middle between the two closest representable values, which are 253 and 253 + 2. In that situ-
ation, the value 253 is preferred, because its representation uses an even mantissa (specifically,
(s, e, m) = (0, 1076, 0) for 253, while (s, e, m) = (0, 1076, 1) for 253 + 2).

In Falcon, “round to nearest - even” is always used.

5

3.2 Hardware FPU
A number of architectures offer more or less complete implementations of IEEE-754 oper-
ations. The C standard[3] does not mandate strict conformance to IEEE-754, but supports
it, and moreover defines the exact rules to do so; a C compiler that supports IEEE-754 will
define the __STDC_IED_559__ macro to signal this property, and will follow precise rules,
most notably that the C type double corresponds to the IEEE-754 binary64 type (and thus
has size 64 bits).

Using exactly the precision of the binary64 type is important for the implementation
of the round-to-nearest-integer function. The previous reference implementation of Falcon
used the llrint() function; since this function implementation is not necessarily constant-
time, our new implementation instead uses the following method for a floating-point value
x:

– If x > 252 then it already represents exactly an integer, and we can use a simple type cast,
which will use the conversion to integer opcode.

– If 0 ≤ x ≤ 252, then (252 + x) − 252 computes exactly the required rounding, provided
that the initial additionuses the binary64 precision and round-to-nearest-even rounding.

– If x < 0 then there are two similar sub-cases, depending on whether x < −252 or not.

For constant-time processing, all sub-cases must be performed, and the correct result filtered
with bitwise operations. This yields the following code:

int64_t sx, tx, rp, rn, m;
uint32_t ub;

sx = (int64_t)(x - 1.0);
tx = (int64_t)x;
rp = (int64_t)(x + 4503599627370496.0) - 4503599627370496;
rn = (int64_t)(x - 4503599627370496.0) + 4503599627370496;

/*
* If tx >= 2^52 or tx < -2^52, then result is tx.
* Otherwise, if sx >= 0, then result is rp.
* Otherwise, result is rn. We use the fact that when x is
* close to 0 (|x| <= 0.25) then both rp and rn are correct;
* and if x is not close to 0, then trunc(x-1.0) yields the
* appropriate sign.
*/

m = sx >> 63;
rn &= m;
rp &= ~m;
ub = (uint32_t)((uint64_t)tx >> 52);
m = -(int64_t)((((ub + 1) & 0xFFF) - 2) >> 31);
rp &= m;
rn &= m;
tx &= ~m;
return tx | rn | rp;

6

This process works and is constant-time as long as the additions and subtractions on floating-
point values, and conversions from floating-point to integers (which use “truncate towards
zero” semantics), are constant-time and use the binary64 precision exactly.

In practice, strict IEEE-754 compliance is not guaranteed. Modern x86 CPU in 64-bit
mode use the SSE2 unit for all floating-point operations, which guarantees correct behaviour
and rounding as per the specification. On other systems, this is more a hit-and-miss game:

– On x86 in 32-bitmode, floating-point operationsmay be performedwith the “387 FPU”
(the floating-point instruction set introduced with the 80387 co-processor). This FPU
supports several rounding precisions, and typically defaults, for intermediate computa-
tions, to a larger precision (FPU registers have size 80 bits, with 64-bit mantissas)1.
In order to ensure rounding at the exact binary64 precision, our implementation sets the
appropriate bits in the FPUcontrolword (using inline assemblywith thefstcwopcode)
before performing key pair or signature generation, and sets back the previous precision
afterwards.

– On some systems (in particular PowerPC), the hardware FPU provides “fused multiply-
add” (FMA) opcodes, that combine a multiplication and an addition in a single opera-
tion, the IEEE-754 rounding being applied only once.While FMAopcodes are “correct”
from a security point of view, they imply some slightly different results when compared
with platforms that do not have or use FMA opcodes, preventing reproducibility of test
vectors. To prevent such contractions of expressions, C99 defines a standard #pragma
directive:

#pragma STDC FP_CONTRACT OFF

but it appears to be ignored by GCC 6.2.2, for which a GCC-specific directive must be
used:

#pragma GCC optimize ("fp-contract=off")

– Some hardware provides IEEE-754 rounding, except for subnormals. This is typically
the case of embedded PowerPC hardware, which return zero instead of a subnormal.
Exact IEEE-754 rounding can then be achieved only with extra test code or by having the
hardware trigger aCPU exceptionwhen a subnormal result is obtained, for the operating
system to perform corrective actions to yield the proper result. Since Falcon does not
use subnormals, this situation does not arise in practice, and the rounding-to-zero of
subnormals is perfectly acceptable for our implementation.

– On some platforms, there is no hardware FPU, and the software routines that emulate
FP operations, as provided by the compiler,may have improper rounding in some cases2.

1 This depends on the operating system conventions; on FreeBSD, binary64 precision is used; onDar-
win, the SSE2 unit is used instead of the 387 FPU. The larger precision is the default on Linux and
Windows, though.

2 This is for instance the case with the routines provided by GCC 7.3.0 for the FPU-less ARMv7-M
CPU such as the Cortex M3 andM4; while they are correct most of the time, they get the rounding
wrong in the last bit in some cases, e.g. when adding 1048576.0000000002 to 9007199254740989:
the correctly rounded result is 9007199255789566, but on theARMwithGCC-provided emulation,
one gets 9007199255789563.6 instead.

7

However, the compiler-provided routines are usually not constant-time, and the emula-
tion routines provided in our implementation should be used instead.

There is no C operator for square roots, but most FPUs implement that operation as
a dedicated opcode. On many platforms, calling the sqrt() library function results in the
inlining of that opcode, alongwith a test on the operand to call the library function in case the
operand is not a nonnegative, finite value3. Since Falcon never tries to extract the square roots
on negative numbers, the library function is never actually called, but the dependency on
libm is still present. To avoid it, we use dedicated inline assembly and/or compiler intrinsics
to invoke the square root opcode and not the library function; this is supported on x86 (32-
bit and 64-bit, with GCC, Clang and MSVC), PowerPC (32-bit and 64-bit, both big-endian
and little-endian, with GCC, Clang and IBM XLC) and ARM (32-bit “armhf”, and 64-bit
“aarch64”, with GCC and Clang).

Constant-time status: using the hardware FPU leads to a constant-time implementa-
tion of Falcon only if the hardware offers constant-time opcodes. The core operations that
will be typically done by the FPU are the following:

– Additions and subtractions.
– Multiplications.
– Divisions.
– Square roots.
– Conversions between integers and floating-point values (as per C rules, these apply trun-
cation toward zero).

In Falcon, all operands and results are normal values or zeros; no subnormals, infinites or
NaNs are used.Notably, divisors are never zero, square root operands are always positive, and
when converting a floating-point to an integer, the result is always representable in the range
of the target integer type. Moreover, divisions and square roots occur only during computa-
tions of the Falcon tree.

Following analysis in [1], on recent x86CPU, additions, subtractions,multiplications and
conversions, as used in Falcon, are fully constant-time. Divisions and square roots aremostly
constant-time, except that some “shortcuts” are applied when a divisor is a power of two, or
a square root operand is a power of four: in these cases, the operation is slightly faster.

Crucially, such a situation may occur only within the Falcon tree building, and when it
occurs in a key, it will occur always at the same place within the tree. If observed by outsiders,
they may learn only a static piece of information on the private key, unimpacted by the ran-
dom nonces and messages; thus, the leak, if present, cannot be exploited into a larger key
recovery or forgery attack. Experimentally, over 470,000 Falcon-512 key pairs, and 160,000
Falcon-1024 key pairs:

– Adivisionby apower of twohappens conjointlywith a square root of a power of four, for
a leaf of the Falcon tree. The square root operand is then 214 (no other value is possible).
No case was observed otherwise, neither higher in the tree, or during key pair generation.

– About 0.18% of Falcon-512 keys presented such a case, and 0.17% of Falcon-1024 keys.

3 The FP facilities can be configured to trigger exceptions or do some other error reporting, which
is implemented by the library functions but not by the hardware opcode; the call is then meant to
manage errors.

8

We can thus estimate that the side-channel leak due to some cases of divisions and square
roots completing slightly faster than usual may happen in about one every 29 key pairs, and
will yield only a static information about which of the n = 29 or 210 tree leaves yielded an
input of 214 to the square root, i.e. an information worth at most 18 or 19 bits of secret key
material.

The leak is hard to detect (the timing difference is less than 10 clock cycles). Even if it
can be detected in practice, there is no knownmethod by which such an information may be
exploited in an attack. If such a method is ever found, the reduction in security level will not
exceed these 18 or 19 bits, and will impact only one in every 500 keys. We thus consider that
this leak is negligible; this is the sense inwhichwe can claimFalcon tobe “fully constant-time”.

There is a relatively simple method by which even this negligible leak can be removed. It
suffices to compute the Falcon tree after key pair generation, not necessarily retaining the
L matrices, and then to verify that none of the tree leaves involves one of the blacklisted
operands (square root of exactly 214). If such a case is reached, the newly generated key pair
can be discarded, and a newone generated in its place. The computational overheadwould be
moderate (tree generation cost is between 1% and 10% of key pair generation cost, depending
on architecture, and only 0.18% of keys would have to be regenerated). This method would
simply remove all doubts about this slight theoretical leak. We have not yet implemented it,
for three reasons:

– Computing the Falcon tree, even without retaining theLmatrices, uses more temporary
RAM than the rest of key pair generation; for Falcon-1024, this would require about
49.1 kB, while key pair generation itself fits in 28.7 kB. It is conceivable that this RAM
usage may be reduced; more optimization work is needed in that area.

– One of the NIST test vectors includes an affected key. Rejecting it would modify that
test vector.

– On amore general basis, which values are “forbidden” depends on the underlying imple-
mentation of floating-point operations. Our own software emulation (described in the
next section), for instance, does not have any forbidden value. But for reproducibility of
test vectors, all implementations must use the exact same rules.

In a future version of our Falcon implementation, when exact rules for forbidden values
are properly specified, the key rejection process described above will be implemented.We still
stress that, from our analysis, the leak appears to be negligible anyway.

3.3 So�ware Emulation
Within the new Falcon implementation, all floating-point values are represented by a type
called fpr, and all operations use functions such as fpr_add(). When using the hardware
FPU, the fpr type is defined to be a struct with a single field of type double, and the
operation functions are all declared “static inline” and simply apply the relevant C op-
erators. The use of a wrapping struct is meant to detect cases where rawC operators would
be used on the values, instead of the wrapping functions; all calls being inlined, the compiler
can bypass the wrapping, which thus induces no runtime cost.

When software emulation is enabled with the compile-time macro FALCON_FPEMU, the
fpr type is an alias foruint64_t, and the elementary operations use functions implemented
with only integer operations, and fully constant-time. These functions do not handle special

9

cases (infinites,NaNs and subnormals), but provide correctly rounded results as per IEEE-754
rules for all normal values and zeros.

The assertion that a given piece of code is “constant-time” depends on some assump-
tions about the implementation of the elementary operations by the hardware, and about
the way the compiler translates source code into CPU opcodes. In particular, our new im-
plementation of Falcon, when using FALCON_FPEMU, is constant-time, under the following
assumptions:

– Integermultiplications of 32-bit valueswith a 64-bit result execute in a time independent
of the values of the operands.

– Left and right shifts of 32-bit values execute in a time independent of both the value
which is to be shifted, and the shift count (which is between 0 and 31).

While most modern CPU offer constant-time multiplications opcodes, some relatively
widespread platforms, especially in embedded microcontrollers, have variable-time multipli-
cations[8]. In the ARM Cortex line, the Cortex M4 offers constant-time 32 × 32 → 64
multiplications, but the CortexM3 does not. The primary embedded target for our new im-
plementation is the Cortex M4.

Shiftswith apotentially secret count are used especially in the implementationof floating-
point additions and subtractions: each operand has its own exponent, and at least one must
be shifted by an amount that depends on the difference between these exponents, for the two
mantissas to be properly aligned for the addition or subtraction operation.

Most CPU, even small ones, have constant-time shifts, because they internally use a bar-
rel shifter. This would not have been the case on many CPUs from the previous century; the
most recent notable exception is the Pentium IV (NetBurst core), which lacked a barrel shifter
andwhose shifts would take a variable amount of time, depending on the shift count. In Intel
lines of CPU, the NetBurst core was replaced in 2006 with the line of cores called (confus-
ingly) “Core” and derived from the P6 microarchitecture used by Intel before NetBurst (the
NetBurst was thus a dead-end in the Intel CPU evolutionary tree).

It shall be noted that we are here talking about shifts of 32-bit values, not 64-bit. On a
generic 32-bit architecture, 64-bit integers are represented over two registers, and if the shift
count may range up to 63, then conditional execution may be used to handle the two sub-
cases, depending on whether the shift count is lower than 32 or not. Indeed, on 32-bit Pow-
erPC, the following C function:

uint64_t lsh(uint64_t x, unsigned n)
{

return x << n;
}

will be compiled (by GCC 6.2.0, optimization flags -O2) into:

lsh:
stwu 1,-16(1)
addic. 9,5,-32
blt 0,.L2
slw 3,4,9
li 4,0

10

addi 1,1,16
blr
.p2align 4,,15

.L2:
srwi 9,4,1
subfic 10,5,31
srw 9,9,10
slw 3,3,5
or 3,9,3
slw 4,4,5
addi 1,1,16
blr

We notice that the second opcode (addic.) subtracts 32 from the shift count, updating the
flags; then, the third opcode (blt) jumps to label .L2 if the result of the subtraction is nega-
tive, i.e. if the shift count is in the 0 to 31 range.This non-constant-timebehaviour, observable
by outsiders through timing or cache attacks, thus leaks the bit 5 of the shift count.

To avoid such issues, we use the following function instead:

uint64_t fpr_ulsh(uint64_t x, unsigned n)
{

x ^= (x ^ (x << 32)) & -(uint64_t)(n >> 5);
return x << (n & 31);

}

which avoids the issue: the bit 5 of the shift count is handled specially, and the actual shift is
onlywith a count in the 0 to 31 range. GCC still generates a sequence of opcodes that includes
a conditional jump, but this is because GCC apparently lacks the ability to notice that n&31
can never be outside of the 0 to 31 range; the conditional jump will be always taken, and thus
will no longer leak information on the shift count.

On some architectures (notably x86 and ARM), opcodes are provided, that can do more
than a shift of a 32-bit value by a count in the strict 0 to 31 range; for these systems, compilers
can anddo generate branchless, constant-time code for shifts of 64-bit values. But our integer-
only implementation ismeant toprovide constant-timeprocessing in aportableway, and thus
needs to use the “safe” function fpr_ulsh().

Our software emulation code implements all neededoperations in full constant-timepro-
cessing. This includes additions, subtractions andmultiplications, but also conversions to in-
tegers (both with truncating toward 0 and rounding to the nearest integer) and from integers
(which requires finding the topnon-zerobit of the operand in a constant-timeway), divisions,
and extraction of square roots. The compiled code is typically slower than the hardware FPU
opcodes by a factor of 20 or so.However, it is highly portable and reproducible, and safe based
on fewer assumptions on the hardware than the implementation using the FPU.

3.4 ARM Cortex M4
The ARMCortexM4 implements the ARMv7-M architecture. That core provides two (op-
tional) components: a small DSP, that can make SIMD operations (integer-only computa-
tions, on limited-size values), and a hardware FPU. That hardware FPU supports only the

11

binary32 type, not binary64 (its abilities with regards to binary64 values are limited to con-
verting to binary32, with an unavoidable loss of precision, and back). Therefore, that hard-
ware FPU is unsuitable to Falcon, and we do not use it.

If compiling with the native double type, then the compiler will emit calls to software
emulation routines. These routines are somewhat more efficient than our code, but they are
not constant-time. Notably, they implement shortcuts and return much quicker when the
operands allow for it (e.g. multiplying by zero, or adding together two values such that one
has a much smaller exponent than the other). For safe operations, the FPEMU code must be
used.

Our implementation provides assembly implementations for the core floating-point op-
erations: conversions from integer to floating-point (with the fpr_scaled() function),
additions (fpr_add()), multiplications (fpr_mul()), divisions (fpr_div()) and square
roots (fpr_sqrt())4. The result is more than twice faster than the generic FPEMU code, and
close to the speed of the non-constant-time routines provided by the compiler for normal,
non-shortcut operands. Among the CPU features that are not easily leveraged by generic C
code, one may note the following:

– Flags for carries and borrows are available, helping with operations over integers larger
than 64 bits.

– Left and right shifts with the lsl and lsr opcodes, using a register for the shift count,
actually work on the eight least significant bits of that register; i.e. the shift count can
meaningfully range up to 255, instead of 31.

– The clz opcode counts the number of leading zeros in a 32-bit value: it locates the top
non-zero bit in a constant-time and very fast way (1 cycle). This is very convenient for
normalizing results of operations, especially additions.

– Opcodes for inserting (bfi), extracting (ubfx) or clearing (bfc) arbitrary groups of con-
secutive bits in a 32-bit word allow for efficient extraction and reassembly of the compo-
nents (sign bit, exponent, mantissa) of a floating-point value.

The assembly functions are provided as “naked functions”, i.e. C functions whose com-
plete body is inline assembly, as supported by GCC and Clang. There is thus no separate
assembly source file, and the compilation process is unchanged. The functions honour the
calling conventions of the ABI: all modified registers (except the scratch registers r0 to r3)
are saved, and the 64-bit alignment of the stack pointer is maintained.

Since the DSP and single-precision FPU are not used, our code will actually run properly
on an ARM Cortex M3 as well. However, the 32 × 32 → 64multiplication opcodes of the
M3 are not constant-time[5] (and are somewhat slower than on the M4), meaning that our
Falcon implementation, running on the M3, would not be safe against side-channel attacks
(although how the information leak could be turned into an actual attack is not known at the
time). This remark applies to both our inline assembly code and the generic FPEMU.

4 Subtraction is done by inversing the sign bit of the second operand and then using addition, and thus
does not warrant its own assembly implementation.

12

4 Constant-Time Processing
Apart from the constant-time implementation of floating-point operations, as described in
the previous section, a number ofmodifications have beendone in order to ensure that Falcon
operations are fully constant-time.

Key pair generation.Key pair generation involves generating the f and g polynomials
with a simple Gaussian distribution, then solving the NTRU equation to compute F andG.

The generation of f and g uses a simple table-based process: for each coefficient to gener-
ate:

– A random bit s is generated, as well as a random value v0. If v0 is lower than a given
constant c0, then the coefficient will be zero.

– A random 63-bit value v1 is generated, and a table of constants is used: the index k of
the first value ck which is not greater than v1 is obtained (the table elements are indexed
starting at 1, and are in decreasing order, the last one being 0, thus guaranteeing a unique
solution).

– If v0 < c0, then the new polynomial coefficient is 0. Otherwise, its value is (−1)sk.

All operations are performed systematically, i.e. the test on v0 is done in a constant-time way,
and the lookup of v1 in the table is always done, regardless of the result of the test on v0.
Moreover, the table lookup is done by reading all elements of the table, with no early exit.

When solving the NTRU equation, polynomials of various degrees, whose coefficients
are big integers, are computed. Most of the reference code was already naturally constant-
time, since itwasusingRNS (residuenumber system) forbig integers,workingon an expected
length of the integers rather than their true length. Twomajor changes were made to achieve
constant-timeness:

– At the deepest level of the formally recursive process, an extended GCD between two
big integers is performed. We imported the constant-time binary GCD implementation
from BearSSL[2].

– When reducing a pair of polynomials (F ′, G′) with regards to another pair (f ′, g ′) that
have smaller coefficients, using Babai’s nearest plane algorithm, the implementation re-
peatedly uses floating-point approximations of the polynomial coefficents, in order to
obtain small reduction coefficients that will shave off 25 to 30 bits from the coefficients
of (F ′, G′). The reference implementation was measuring the actual size of the coeffi-
cients, in order to have the best possible approximation, and stopped the loop when no
further reduction was achieved. Our new implementation, instead, uses a statistical es-
timate of the current sizes of the coefficients to obtain a floating-point approximation,
reading a full 310-bit range (ten 31-bit words) for each integer;moreover, the loop conser-
vatively assumes that the reductionwas of only 25 bits each time, and iterations continue
until the estimated size of (f ′, g ′) is reached.

These changes induce a few extra costs, and our key generation process is bout 10% to
15% slower than the previous reference code. Memory usage is unchanged, and everything is
fully constant-time5.

5 Babai’s reduction involves some floating-point divisions; theoretically, one such division may use a
divisor which is a power of two, that a hardware FPU could leverage as a shortcut. Such an event

13

Gaussian sampling.The newGaussian sampler[10] is similar to the one from the ref-
erence code, with the following differences:

– The half-Gaussian distribution, which is the basis for the rejection sampling, uses a table
which is accessed in a constant-time way, similarly to the generation of coefficients in key
pair generation (described above).

– Rejection sampling implies computing e−x for values x such that 0 ≤ x ≤ log 2. While
the reference code was using an implementation of the exponential lifted from the well-
knownfdlibm[4], our new code uses the polynomial approximation fromFACCT[11].
The polynomial avoids any use of division. Moreover, when using FPEMU, the polyno-
mial is evaluated to the required precision using plain integers only, without exponents,
leading to constant-time and much faster code.

While the exponential evaluation is faster, the table lookup is slower than in the previous
reference code, since it now needs to read all table values systematically. Moreover, the new
parameterization from [10] implies a lower acceptance rate (about 73%, down from the pre-
vious 93%) and thus more required iterations per signature.

WhenusingAVX2opcodes explicitly (with theFALCON_AVX2 compile-timeoption), the
table lookup is more efficient, since AVX2 can read 32 bytes in one go and perform four 64-
bit comparisons in parallel. Moreover, AVX2 opcodes are used for a much faster implemen-
tation of the ChaCha20 stream cipher that generates the pseudorandom values on which the
sampling operates. Finally, when AVX2 is used, the polynomial approximation for e−x is per-
formed with an alternate circuit that computesmoremultiplications and additions, but with
a lower circuit depth: this improves performance because CPUs with AVX2 support tend to
have large abilities at parallel evaluation. Indeed, on a Skylake core, a floating-point addition
has a latency of 4 cycles, but a reciprocal throughout of only 0.5 cycles, meaning that eight
additions can be issued before the result of the first one is available. Evaluation latency turns
out to be a more important factor for performance than the raw operation count.

Hash-to-point and signature encoding. Nominally, “constant-time” is about not
leaking information on the private key through timing-based side channels. However, the
signature value, and the signed message, are not considered secret. Indeed, if the message m
is secret but is of low enough entropy to allow an exhaustive search attack, then the signature
value and the public key can necessarily be used as a stop condition for such an attack: the
attacker “tries” various potential values form, and knows he reached the right one when the
signature verification succeeds. This property is common to all signature algorithms, not just
Falcon.

Our implementation primarily focuses on the normal situation of non-secret signatures
and public keys. However, we also provide some support for the unusal scenario where pub-
lic keys and signatures are secret, and messages may be subject to an exhaustive search. In the
reference implementation of Falcon, two characteristics failed to provide side-channel protec-
tion in these cases:

appears to be exceedinly rare; we did not observe it a single time over more than 500,000 key pair
generations. Even if it ever happened and could be observed – a difficult feat for the attacker, since it
is by nature a one-time event, never repeated, and the timing difference is less than 10 cycles – there
is no currently known way of exploiting that small bit of information.

14

– The hash-to-point mechanism repeatedly obtains 16-bit values from SHAKE256 (with
input r ‖ m); if the value is between 0 and 61444, it is reducedmodulo 12289; otherwise,
the 16-bit value is rejected and a new one obtained. This process ensures that hashed
messages will be uniformly distributed, but it is inherently non-constant-time and can
serve as a stop condition for an exhaustive search attack onm.

– Signatures are encoded with a variable-size compression scheme. Each coefficient of s2
yields a number of bits which depends on the coefficient value.

To solve the first item, we provide a constant-time variant of the hash-to-point mecha-
nism. That variant first obtains sufficiently many 16-bit values to almost always have enough
(the number of extra values is adjusted so that the probability of not getting enough is lower
than 2−256, i.e. negligible). Then, out-of-range values are marked as “holes” in the list, and
squeezed out in a number of passes. For a Falcon degree n, log2 n passes are needed, and
each pass uses only constant-time conditional swaps. Some overhead is unduced by the over-
extraction of values from SHAKE256 and the conditional swaps; this overhead is relatively
small with regards to the signature generation process, but non-negligible for the faster signa-
ture verification process. We thus made this process optional.

For the second item, we defined a second signature encoding process where each coeffi-
cient of s2 is encoded over a fixed number of bits. Extensive experiments havemeasured amax-
imum range for these coefficients of±1077; thus, 12 bits ought to be enoughwith overwhelm-
ing probability. The signature generation process furthermore includes an explicit check: if
any coefficient is not in the -2047 to +2047 range, the signature is discarded, and a new one is
obtained. This never happens in practice.

5 Portability and Performance
Our new implementation has been successfully tested on several architectures. A “successful”
test implies exact reproduction of 100 test vectors on pseudorandom messages and seeds for
each of Falcon-512 and Falcon-1024. Each test vector involves generating a public/private key
pair, and then signing a message. A specific seed is used for each test. Test systems were the
following:

– x86, 64-bit mode (amd64 on Intel i7-6567U):
• Linux (Ubuntu 18.04), GCC 7.4.0
• Linux (Ubuntu 18.04), Clang 6.0.0
• Windows (10), MSVC 2015

– x86, 32-bit mode (i386 on Intel i7-6567U):
• Linux (Ubuntu 18.04), GCC 7.4.0
• Linux (Ubuntu 18.04), Clang 6.0.0
• Windows (10), MSVC 2015

– PowerPC, 64-bit, little-endian (ppc64le on POWER8):
• Linux (Ubuntu 16.10), GCC 6.2.0
• Linux (Ubuntu 16.10), Clang 3.8.1
• Linux (Ubuntu 16.10), XLC 13.1.5

– PowerPC, 64-bit, big-endian (ppc64be on POWER8):
• Linux (Ubuntu 16.10), GCC 6.2.0

15

• Linux (Ubuntu 16.10), Clang 3.8.1
– PowerPC, 32-bit, big-endian (ppc on POWER8; kernel is ppc64be):
• Linux (Ubuntu 16.10), GCC 6.2.0
• Linux (Ubuntu 16.10), Clang 3.8.1

– ARM, 64-bit, little-endian (aarch64 on Cortex-A53):
• Linux (Ubuntu 17.04), GCC 6.3.0
• Linux (Ubuntu 17.04), Clang 3.9.1

– ARM, 32-bit, little-endian (armhf on Cortex-A53):
• Linux (Raspbian 8), GCC 4.9.2
• Linux (Raspbian 8), Clang 3.5.0

All these systems have a usable hardware FPU. Both FPNATIVE and FPEMU engines work
on each machine. On the x86 systems, all tests were performed both with and without usage
of AVX2 intrinsics.

5.1 RAM Usage
In the external API of our new implementation, temporary buffers are provided by the caller,
so that theymay be allocatedwhere appropriate for the usage context. Temporary buffer sizes
are the following (all sizes are expressed in bytes):

degree make pub verify keygen sign (tree) expand key sign (dyn)
512 3073 4097 15879 25607 26631 39943
1024 6145 8193 31751 51207 53255 79879

Sizes of public, private and expanded private keys are:

degree public key private key expanded key
512 897 1281 57344
1024 1793 2305 122880

Note that decoding a private key from its normal format (of length 1281 bytes for Falcon-512,
containing f , g and F) into an expanded key requires 57344 bytes for storing the expanded
key (Falcon tree) and 26631 bytes of temporary storage for computing the expanded key.That
temporary storagemay be reused for signature generation operations (which use 25607 bytes,
when an expanded Falcon-512 key is available).

Signature sizes depend on whether compression is used or not. Not using compression
yields larger signatures, butwith a fixed size; this is the format that shouldbeusedwhen signed
messages are low-entropy secret values.Whenusing compression, signatures have amaximum
theoretical size (largest size needed for any vector whose norm is short enough to possibly be
a valid signature), but also a measured average and standard deviation, shown below:

degree uncompressed compressed max compressed avg (std. dev)
512 809 752 651.59 (2.55)
1024 1577 1462 1261.06 (3.57)

16

The averages have been measured over 10,000 signatures (100 random key pairs, 100 signa-
tures per key pair). Take care that the signature format now includes the 40-byte nonce; the
Falcon specification lists some measured sizes without the nonce.

The nonce size has been chosen so that within the usage limits specified by the NIST
Post-Quantum Cryptography project (264 maximum number of signatures per private key),
risks of nonce reuse are at most 2−192. Falcon can use much shorter nonces, as long as some
mechanism is in place that prevents nonce reuse; “40 bytes” is the safe length for random
generation without maintaining any mutable state.

5.2 Intel i7-6567U
The test system is aMacBookPro system, runningLinux (in a virtualmachine) in 64-bitmode
(amd64). CPU is an Intel i7-6567U (Skylake core), nominally running at 3.3 GHz; however,
this CPU uses TurboBoost that raises the frequency up to 3.6 GHz under load. The values
below have been measured by running the tested operation sufficiently many times that the
total time (measured with clock()) is at least 2 seconds. Time per operation is given in mi-
croseconds (µs) and clock cycles, the latter assuming a 3.6 GHz clock rate (when performing
the test, the machine is mostly idle with no potentially expensive background task such as
music streaming, or Slack). Precision can be estimated to about 1% or 2%.

Three configurations are measured:

– fpemu: generic integer emulation of floating-point operations, no use of the native FPU
or SSE2 hardware. Compilation with Clang 6.0.0, optimization flags: -O3

– fpnative: use of the native FP hardware (SSE2 unit) through the double type; no com-
piler intrinsics. Compilation with Clang 6.0.0, optimization flags: -O3

– avx2: use of the native FP hardware (SSE2 unit) through the double type, enhanced
with explicit use of the AVX2 and FMA intrinsics. The compiler also automatically uses
AVX2 opcodes for some operations (in particular automatic vectorization of the signa-
ture verification process, which is expressed in integer C code only). Compilation with
Clang 6.0.0, optimization flags: -O3 -march=native -mcpu=native

The measured speeds for Falcon-512 are the following (the operations marked with “ct”
mean that constant-timehash-to-point and the fixed-size signature size are used, to ensure pri-
vacy of the signed message itself; but all other operations are still constant-time with regards
to the private key):

Falcon-512 fpemu fpnative avx2
operation µs cycles µs cycles µs cycles
key pair generation 17,060.00 61,416,000 7,510.00 27,036,000 7,350.00 26,460,000
sign (dynamic) 5,098.28 18,353,808 323.32 1,163,952 244.76 881,136
sign (dynamic, ct) 5,103.22 18,371,592 342.73 1,233,828 261.82 942,552
expand private key 2,105.37 7,579,332 105.72 380,592 98.31 353,916
sign (tree) 2,172.58 7,821,288 172.97 622,692 108.27 389,772
sign (tree, ct) 2,198.05 7,912,980 188.41 678,276 126.41 455,076
verify 27.25 98,100 26.61 95,796 22.67 81,612
verify (ct) 44.03 158,508 43.89 158,004 40.16 144,576

17

For Falcon-1024, the following timings have been measured, on the same CPU and with
the same three configurations:

Falcon-1024 fpemu fpnative avx2
operation µs cycles µs cycles µs cycles
key pair generation 48,870.00 175,932,000 22,400.00 80,640,000 21,940.00 78,984,000
sign (dynamic) 11,093.83 39,937,788 664.29 2,391,444 495.63 1,784,268
sign (dynamic, ct) 11,068.68 39,847,248 699.78 2,519,208 528.05 1,900,980
expand private key 4,651.31 16,744,716 215.40 775,440 199.18 717,048
sign (tree) 4,730.34 17,029,224 353.74 1,273,464 219.46 790,056
sign (tree, ct) 4,765.49 17,155,764 386.78 1,392,408 253.80 913,680
verify 55.76 200,736 56.24 202,464 43.94 158,184
verify (ct) 88.80 319,680 88.71 319,356 77.77 279,972

5.3 ARM Cortex M4
For benchmarking our code on theARMCortexM4,we used a STM32F4 “discovery” board
(STM32F407VG-DISC1). The board provides anARMCortexM4 core that can run at up to
168MHz, alongwith 192 kB ofRAM(in two separate chunks of 128 and 64 kB, respectively),
and 1 MB of ROM (Flash).

This is the same board as the one used by the pqm4 project[7]. We actually provided a
draft version of our implementation to pqm4, hence their measures are very similar to ours.
There are slight differences which are mostly attributable to cache effects.

Indeed, while theM4 core does not have caches by itself, it obtains instructions and data
from the Flash and RAM. While RAM accesses reliably complete within one cycle, even at
168MHz, Flash accesses are slower. The board thus provides an instruction cache of 1 kB and
a data cache of 128 bytes for all accesses to Flash, along with a prefetcher. At 168 MHz, each
access to Flash has an additional latency of 5 cycles (i.e. a read access initiated at cycle 1 provides
the data at cycle 7 instead of cycle 2 for an access to RAM). The caches work by lines of 16
bytes (128 bits), and the prefetcher tries to issue a read for the next line sufficiently in advance,
based on some limited branch prediction. These schemes are mostly effective, but do not
fully compensate for the 5 extrawait states. In particular, in our SHAKE256 implementation,
the main loop has about 2 kB in size and thus exceeds the I-cache size; we thus expect that
performance is limited by the read bandwidth for instructions. Each read for 16 bytes takes
5 cycles, but delivers only 4 instructions (for the general case of 32-bit instructions), thereby
incurring a 1-cycle stall.

To avoid these issues, pqm4 makes all measures at the reduced frequency of 24 MHz,
where Flash access has no wait state (i.e. it completes within one cycle). We chose the other
option of running at 168MHz, with caches and prefetcher enabled.

For our key pair generationmeasures, we enabled the use of ChaCha20 as pseudorandom
generator: this prevents reproducibility of test vectors, but is safe and saves about 40 million
clock cycles per key pair.

We here list times in milliseconds. Clock cycles have been measured with the integrated
cycle counter (DWT_CYCCNT), with excellent precision. Allmeasures are averages over 200 key
pairs or signatures. Compiler is GCC 6.3.1 with optimization -O2 -mcpu=cortex-m4 and
our software emulation with inline ARM assembly is used.

18

Operation Falcon-512 Falcon-1024
ms cycles ms cycles

key pair generation 1,020.20 171,394,151 3,061.38 514,312,539
sign (dynamic) 246.32 41,381,272 537.89 90,365,144
expand private key 96.39 16,194,107 213.11 35,802,561
sign (tree) 116.69 19,604,182 250.58 42,096,639
verify 3.04 510,751 6.19 1,039,169

When using the constant-time hash-to-point and signature encoding (in the unusual case
where signed data is secret and low-entropy, and the signature and public keys are kept secret),
add 328,625 cycles (1.95milliseconds) to all Falcon-512 signature generations and verifications
(615,145 cycles or 3.66milliseconds for Falcon-1024).

6 Conclusion
We presented new, optimized implementations of Falcon, that fix some longstanding issues
with the reference code: Falcon can now be said to be constant-time, and to be able to run on
small embeddedhardware that does not offer a hardware FPU.Wemoreovermanaged to keep
all test vectors reliably reproducible, thereby showing that all our configurations compute
the same things. This is especially important for lattice-based cryptographic systems, because
security relies on a precise distribution of random samples, which cannot be easily tested for
correctness.

When a hardware FPU is present and usable, Falcon performance is quite satisfying; it
is not completely on par with the best elliptic curve signature schemes, but still in the same
order of magnitude. Falcon-512 is also vastly faster than RSA-2048 on the same hardware,
while providing post-quantum security, and relatively compact signatures and public keys.

On small embedded microcontrollers, Falcon performance suffers from the complexity
of floating-point operations, but still achieves tolerable performance, e.g. sub-second signa-
ture generation time even at moderate operating frequencies (e.g. 64 MHz). Moreover, Fal-
con signature verification is very fast, making it suitable for the common situation of a small
embedded system that verifies a signature on its firmware at boot time.

References
1. Towards Verified, Constant-time Floating Point Operations, M. Andrysco, A. Nötzli, F. Brown,

R. Jhala andD. Stefan, Proceedings of the 2018ACMSIGSACConference onComputer andCom-
munications Security, https://doi.org/10.1145/3243734.3243766

2. BearSSL, https://www.bearssl.org/
3. ISO/IEC 9899:1999 – Programming languages – C, 1999.
4. fdlibm, https://www.netlib.org/fdlibm/
5. A performance study of X25519 on Cortex-M3 andM4,W. deGroot,https://research.tue.

nl/en/studentTheses/a-performance-study-of-x25519-on-cortex-m3-and-m4
6. IEEE Standard for Binary Floating-Point Arithmetic, 1985, https://doi.org/10.1109%

2FIEEESTD.1985.82928
7. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4, M. J. Kannwischer, J. Rijn-

eveld, P. Schwabe and K. Stoffelen, https://eprint.iacr.org/2019/844

19

8. Constant-Time Mul, T. Pornin, https://www.bearssl.org/ctmul.html
9. Falcon, T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricosset,

G. Seiler, W. Whyte and Z. Zhang, Technical report, National Institute of Standards and Tech-
nology, 2017, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
round-2-submissions

10. Simple, Fast and Constant-TimeGaussian Sampling over the Integers for Falcon,T. Prest,T.Ricosset
andM. Rossi, to be presented at the Second NIST PQCworkshop (August 2019).

11. FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers, R. K. Zhao,
R. Steinfeld and A. Sakzad, https://eprint.iacr.org/2018/1234

20

